58 research outputs found

    Measurement of the Pseudorapidity and Centrality Dependence of the Transverse Energy Density in Pb-Pb Collisions at √sNN=2.76  TeV

    Get PDF
    The transverse energy (E-T) in Pb-Pb collisions at 2.76 TeV nucleon-nucleon center-of-mass energy (root s(NN)) has been measured over a broad range of pseudorapidity (eta) and collision centrality by using the CMS detector at the LHC. The transverse energy density per unit pseudorapidity (dE(T)/d eta) increases faster with collision energy than the charged particle multiplicity. This implies that the mean energy per particle is increasing with collision energy. At all pseudorapidities, the transverse energy per participating nucleon increases with the centrality of the collision. The ratio of transverse energy per unit pseudorapidity in peripheral to central collisions varies significantly as the pseudorapidity increases from eta = 0 to vertical bar eta vertical bar = 5.0. For the 5% most central collisions, the energy density per unit volume is estimated to be about 14 GeV/fm(3) at a time of 1 fm/c after the collision. This is about 100 times larger than normal nuclear matter density and a factor of 2.6 times higher than the energy density reported at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider

    Measurement of the differential cross section for isolated prompt photon production in pp collisions at 7 TeV

    Get PDF
    A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a center-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 pb(-1) recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range vertical bar eta vertical bar < 2.5 and the transverse energy range 25 < E-T < 400 GeV, corresponding to the kinematic region 0.007 < x(T) < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of E-T in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section

    Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC

    Get PDF
    This is the Pre-Print version of the Article - Copyright @ 2011 APSA multivariate likelihood method to measure electroweak couplings with the Drell-Yan process at the LHC is presented. The process is described by the dilepton rapidity, invariant mass, and decay angle distributions. The decay angle ambiguity due to the unknown assignment of the scattered constituent quark and antiquark to the two protons in a collision is resolved statistically using correlations between the observables. The method is applied to a sample of dimuon events from proton-proton collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 1.1 inverse femtobarns. From the dominant u-ubar, d-dbar to gamma*/Z to opposite sign dimuons process, the effective weak mixing angle parameter is measured to be sin^2(theta[eff]) = 0.2287 +/- 0.0020 (stat.) +/- 0.0025 (syst.). This result is consistent with measurements from other processes, as expected within the standard model
    • 

    corecore