198 research outputs found

    Do Neutrophils Play a Role in Establishing Liver Abscesses and Distant Metastases Caused by Klebsiella pneumoniae?

    Get PDF
    Serotype K1 Klebsiella pneumoniae is a major cause of liver abscesses and endophthalmitis. This study was designed to identify the role of neutrophils in the development of distant metastatic complications that were caused by serotype K1 K. pneumoniae. An in vitro cellular model was used to assess serum resistance and neutrophil-mediated killing. BALB/c mice were injected with neutrophils containing phagocytosed K. pneumoniae. Serotype K1 K. pneumoniae was significantly more resistant to serum killing, neutrophil-mediated phagocytosis and intra-cellular killing than non-K1 isolates (p<0.01). Electron microscopic examination had similar findings as in the bioassay findings. Intraperitoneal injection of neutrophils containing phagocytosed serotype K1 K. pneumoniae led to abscess formation in multiple sites including the subcutaneous tissue, lung, and liver, whereas no abscess formation was observed in mice injected with non-K1 isolates. The resistance of serotype K1 K. pneumoniae to complement- and neutrophil-mediated intracellular killing results in the dissemination of K. pneumoniae via the bloodstream. Escape from neutrophil intracellular killing may contribute to the dissemination and establishment of distant metastases. Thus, neutrophils play a role as a vehicle for helping K. pneumoniae and contributing to the establishment of liver abscess and distant metastatic complications

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe
    corecore