323 research outputs found
Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor
High-temperature (high-Tc) superconductivity in the copper oxides arises from
electron or hole doping of their antiferromagnetic (AF) insulating parent
compounds. The evolution of the AF phase with doping and its spatial
coexistence with superconductivity are governed by the nature of charge and
spin correlations and provide clues to the mechanism of high-Tc
superconductivity. Here we use a combined neutron scattering and scanning
tunneling spectroscopy (STS) to study the Tc evolution of electron-doped
superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing
process. We find that spin excitations detected by neutron scattering have two
distinct modes that evolve with Tc in a remarkably similar fashion to the
electron tunneling modes in STS. These results demonstrate that
antiferromagnetism and superconductivity compete locally and coexist spatially
on nanometer length scales, and the dominant electron-boson coupling at low
energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include
Left main bronchus resection and reconstruction. A single institution experience
<p>Abstract</p> <p>Background</p> <p>Left main bronchus resection and reconstruction (LMBRR) is a complex surgical procedure indicated for management of inflammatory, benign and low grade malignant lesions. Its application provides maximal parenchymal sparing.</p> <p>Methods</p> <p>Out of 98 bronchoplastic procedures performed at the Authors' Institution in the 1995-2011 period, 4 were LMBRR. Indications were bronchial carcinoid in 2 cases, inflammatory pseudotumor in 1 case, TBC stricture in 1 case. All patients underwent preoperatively a rigid bronchoscopy to restore the airway lumen patency. At surgery a negative resection margin was confirmed by frozen section in the neoplastic patients. In all patients an end-to-end bronchial anastomosis was constructed according to Grillo.</p> <p>Results</p> <p>There were neither mortality nor major complications. Airway lumen was optimal in 3 patients, good in 1.</p> <p>Conclusion</p> <p>LMBRR is a valuable option for the thoracic surgeon. It maximizes the parenchyma-sparing philosophy, broadening the spectrum of potential candidates for cure. It remains a technically demanding procedure, to be carried out by an experienced surgical team. Correct surgical planning affords excellent results, both in the short and long term.</p
Evaluation of SOVAT: An OLAP-GIS decision support system for community health assessment data analysis
Background. Data analysis in community health assessment (CHA) involves the collection, integration, and analysis of large numerical and spatial data sets in order to identify health priorities. Geographic Information Systems (GIS) enable for management and analysis using spatial data, but have limitations in performing analysis of numerical data because of its traditional database architecture. On-Line Analytical Processing (OLAP) is a multidimensional datawarehouse designed to facilitate querying of large numerical data. Coupling the spatial capabilities of GIS with the numerical analysis of OLAP, might enhance CHA data analysis. OLAP-GIS systems have been developed by university researchers and corporations, yet their potential for CHA data analysis is not well understood. To evaluate the potential of an OLAP-GIS decision support system for CHA problem solving, we compared OLAP-GIS to the standard information technology (IT) currently used by many public health professionals. Methods. SOVAT, an OLAP-GIS decision support system developed at the University of Pittsburgh, was compared against current IT for data analysis for CHA. For this study, current IT was considered the combined use of SPSS and GIS ("SPSS-GIS"). Graduate students, researchers, and faculty in the health sciences at the University of Pittsburgh were recruited. Each round consisted of: an instructional video of the system being evaluated, two practice tasks, five assessment tasks, and one post-study questionnaire. Objective and subjective measurement included: task completion time, success in answering the tasks, and system satisfaction. Results. Thirteen individuals participated. Inferential statistics were analyzed using linear mixed model analysis. SOVAT was statistically significant (α = .01) from SPSS-GIS for satisfaction and time (p < .002). Descriptive results indicated that participants had greater success in answering the tasks when using SOVAT as compared to SPSS-GIS. Conclusion. Using SOVAT, tasks were completed more efficiently, with a higher rate of success, and with greater satisfaction, than the combined use of SPSS and GIS. The results from this study indicate a potential for OLAP-GIS decision support systems as a valuable tool for CHA data analysis. © 2008 Scotch et al; licensee BioMed Central Ltd
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Human GLI3 Intragenic Conserved Non-Coding Sequences Are Tissue-Specific Enhancers
The zinc-finger transcription factor GLI3 is a key regulator of development, acting as a primary transducer of Sonic hedgehog (SHH) signaling in a combinatorial context dependent fashion controlling multiple patterning steps in different tissues/organs. A tight temporal and spatial control of gene expression is indispensable, however, cis-acting sequence elements regulating GLI3 expression have not yet been reported. We show that 11 ancient genomic DNA signatures, conserved from the pufferfish Takifugu (Fugu) rubripes to man, are distributed throughout the introns of human GLI3. They map within larger conserved non-coding elements (CNEs) that are found in the tetrapod lineage. Full length CNEs transiently transfected into human cell cultures acted as cell type specific enhancers of gene transcription. The regulatory potential of these elements is conserved and was exploited to direct tissue specific expression of a reporter gene in zebrafish embryos. Assays of deletion constructs revealed that the human-Fugu conserved sequences within the GLI3 intronic CNEs were essential but not sufficient for full-scale transcriptional activation. The enhancer activity of the CNEs is determined by a combinatorial effect of a core sequence conserved between human and teleosts (Fugu) and flanking tetrapod-specific sequences, suggesting that successive clustering of sequences with regulatory potential around an ancient, highly conserved nucleus might be a possible mechanism for the evolution of cis-acting regulatory elements
Downregulation of pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels
Analyses of transgenic sugarcane clones with 45–95% reduced cytosolic pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) activity displayed no visual phenotypical change, but significant changes were evident in in vivo metabolite levels and fluxes during internode development. In three independent transgenic lines, sucrose concentrations increased between three- and sixfold in immature internodes, compared to the levels in the wildtype control. There was an eightfold increase in the hexose-phosphate:triose-phosphate ratio in immature internodes, a significant restriction in the triose phosphate to hexose phosphate cycle and significant increase in sucrose cycling as monitored by 13C nuclear magnetic resonance. This suggests that an increase in the hexose-phosphate concentrations resulting from a restriction in the conversion of hexose phosphates to triose phosphates drive sucrose synthesis in the young internodes. These effects became less pronounced as the tissue matured. Decreased expression of PFP also resulted in an increase of the ATP/ADP and UTP/UDP ratios, and an increase of the total uridine nucleotide and, at a later stage, the total adenine nucleotide pool, revealing strong interactions between PPi metabolism and general energy metabolism. Finally, decreased PFP leads to a reduction of PPi levels in older internodes indicating that in these developmental stages PFP acts in the gluconeogenic direction. The lowered PPi levels might also contribute to the absence of increases in sucrose contents in the more mature tissues of transgenic sugarcane with reduced PFP activity
The inhibition of Bid expression by Akt leads to resistance to TRAIL-induced apoptosis in ovarian cancer cells
Epithelial ovarian cancer (EOC) cells often show increased activity of the PI3K/Akt pathway. In addition, we have previously shown that EOC ascites induce Akt activation in the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive EOC cell line, CaOV3, leading to TRAIL-mediated apoptosis inhibition. In this study, we investigated the role of Akt in intrinsic resistance to TRAIL, which is common in EOC cells. We report that Akt activation reduces the sensitivity of EOC cells to TRAIL. TRAIL-resistant SKOV3ip1 and COV2 cells were sensitized to TRAIL-induced apoptosis by PI3K or Akt inhibitors although inhibition of PI3K/Akt signaling pathway did not interfere with the recruitment and processing of caspase-8 to the death-inducing signaling complex. Conversely, overexpression of Akt1 in TRAIL-sensitive cells promoted resistance to TRAIL. Although the fact that TRAIL-induced caspase-8 activation was observed in both sensitive and resistant cell lines, Bid cleavage occurred only in sensitive cells or in SKOV3ip1 cells treated with LY294002. Bid expression was low in resistant cells and Akt activation downregulated its expression. Depletion of Bid by siRNA in OVCAR3 cells was associated with a decrease in TRAIL-mediated apoptosis. Overexpression of Bid only in SKOV3ip1 cells enhanced TRAIL-induced apoptosis. Simultaneous blockade of Akt pathway further increased TRAIL-induced apoptosis. Thus, Akt acts upstream of mitochondria and inhibits TRAIL-induced apoptosis by decreasing Bid protein levels and possibly inhibiting its cleavage
Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease
BACKGROUND
Ustekinumab, a monoclonal antibody to the p40 subunit of interleukin-12 and inter-leukin-23, was evaluated as an intravenous induction therapy in two populations with moderately to severely active Crohn’s disease. Ustekinumab was also evaluated as subcutaneous maintenance therapy.
METHODS
We randomly assigned patients to receive a single intravenous dose of ustekinumab (either 130 mg or approximately 6 mg per kilogram of body weight) or placebo in two induction trials. The UNITI-1 trial included 741 patients who met the criteria for primary or secondary nonresponse to tumor necrosis factor (TNF) antagonists or had unacceptable side effects. The UNITI-2 trial included 628 patients in whom conventional therapy failed or unacceptable side effects occurred. Patients who completed
these induction trials then participated in IM-UNITI, in which the 397 patients who had a response to ustekinumab were randomly assigned to receive subcutaneous maintenance injections of 90 mg of ustekinumab (either every 8 weeks or every 12 weeks) or placebo. The primary end point for the induction trials was a clinical response at week 6 (defined as a decrease from baseline in the Crohn’s Disease Activity Index [CDAI] score of ≥100 points or a CDAI score <150). The primary end point for the maintenance trial was remission at week 44 (CDAI score <150).
RESULTS
The rates of response at week 6 among patients receiving intravenous ustekinumab at a dose of either 130 mg or approximately 6 mg per kilogram were significantly higher
than the rates among patients receiving placebo (in UNITI-1, 34.3%, 33.7%, and 21.5%, respectively, with P≤0.003 for both comparisons with placebo; in UNITI-2, 51.7%, 55.5%, and 28.7%, respectively, with P<0.001 for both doses). In the groups receiving maintenance doses of ustekinumab every 8 weeks or every 12 weeks, 53.1% and 48.8%, respectively, were in remission at week 44, as compared with 35.9% of those receiving placebo (P = 0.005 and P = 0.04, respectively). Within each trial, adverse-event rates were similar among treatment groups.
CONCLUSIONS
Among patients with moderately to severely active Crohn’s disease, those receiving intravenous ustekinumab had a significantly higher rate of response than did those receiving placebo. Subcutaneous ustekinumab maintained remission in patients who had a clinical response to induction therapy. (Funded by Janssen Research and Development; ClinicalTrials.gov numbers, NCT01369329, NCT01369342, and NCT01369355.
- …