113 research outputs found

    Soil type influences crop mineral composition in Malawi

    Get PDF
    Food supply and composition data can be combined to estimate micronutrient intakes and deficiency risks among populations. These estimates can be improved by using local crop composition data that can capture environmental influences including soil type. This study aimed to provide spatially resolved crop composition data for Malawi, where information is currently limited. Six hundred and fifty-two plant samples, representing 97 edible food items, were sampled from N150 sites in Malawi between 2011 and 2013. Samples were analysed by ICP-MS for up to 58 elements, including the essential minerals calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), selenium (Se) and zinc (Zn). Maize grain Ca, Cu, Fe, Mg, Se and Zn concentrations were greater from plants grown on calcareous soils than those from the more widespread low-pH soils. Leafy vegetables from calcareous soils had elevated leaf Ca, Cu, Fe and Se concentrations, but lower Zn concentrations. Several foods were found to accumulate high levels of Se, including the leaves of Moringa, a crop not previously been reported in East African food composition data sets. New estimates of national dietary mineral supplies were obtained for non-calcareous and calcareous soils. High risks of Ca (100%), Se (100%) and Zn (57%) dietary deficiencies are likely on non-calcareous soils. Deficiency risks on calcareous soils are high for Ca (97%), but lower for Se (34%) and Zn (31%). Risks of Cu, Fe and Mg deficiencies appear to be low on the basis of dietary supply levels

    Refinement of arsenic attributable health risks in rural Pakistan using population specific dietary intake values

    Get PDF
    Background: Previous risk assessment studies have often utilised generic consumption or intake values when evaluating ingestion exposure pathways. If these values do not accurately reflect the country or scenario in question, the resulting risk assessment will not provide a meaningful representation of cancer risks in that particular country/scenario. Objectives: This study sought to determine water and food intake parameters for one region in South Asia, rural Pakistan, and assess the role population specific intake parameters play in cancer risk assessment. Methods: A questionnaire was developed to collect data on sociodemographic features and 24-hour water and food consumption patterns from a rural community. The impact of dietary differences on cancer susceptibility linked to arsenic exposure was evaluated by calculating cancer risks using the data collected in the current study against standard water and food intake levels for the USA, Europe and Asia. A probabilistic cancer risk was performed for each set of intake values of this study. Results: Average daily total water intake based on drinking direct plain water and indirect water from food and beverages was found to be 3.5 L day-1 (95% CI: 3.38, 3.57) exceeding the US Environmental Protection Agency’s default (2.5 L day-1) and World Health Organization’s recommended intake value (2 L day-1). Average daily rice intake (469 g day-1) was found to be lower than in India and Bangladesh whereas wheat intake (402 g day−1) was higher than intake reported for USA, Europe and Asian sub-regions. Consequently, arsenic-associated cumulative cancer risks determined for daily water intake was found to be 17 in children of 3-6 years (95% CI: 0.0014, 0.0017), 14 in children of age 6-16 years (95% CI: 0.001, 0.0011) and 6 in adults of 16-67 years (95% CI: 0.0006, 0.0006) in a population size of 10000. This is higher than the risks estimated using the US Environmental Protection Agency and World Health Organization’s default recommended water intake levels. Rice intake data showed early life cumulative cancer risks of 15 in 10000 for children of 3-6 years (95% CI: 0.0012, 0.0015), 14 in children of 6-16 years (95% CI: 0.0011, 0.0014) and later life risk of 8 in adults (95% CI: 0.0008, 0.0008) in a population of 10000. This is lower than cancer risks in countries with higher rice intake and elevated arsenic levels (Bangladesh and India). Cumulative cancer risk from arsenic exposure showed the relative risk contribution from total water to be51%, from rice to be44% and wheat intake 5%. Conclusions: The study demonstrates the need to use population specific dietary information for risk assessment and risk management studies. Probabilistic risk assessment concluded the importance of dietary intake in estimating cancer risk, along with arsenic concentrations in water or food and age of exposed rural population

    Biofuels and the role of space in sustainable innovation journeys

    Get PDF
    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present,and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects,we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and smallscale biofuel systems developed to address local energy needs in the South

    The effect of gold kiwifruit consumed with an iron fortified breakfast cereal meal on iron status in women with low iron stores: A 16 week randomised controlled intervention study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dietary treatment is often recommended as the first line of treatment for women with mild iron deficiency. Although it is well established that ascorbic acid enhances iron absorption, it is less clear whether the consumption of ascorbic acid rich foods (such as kiwifruit) with meals fortified with iron improves iron status. The aim of this study is to investigate whether the consumption of ZESPRI<sup>® </sup>GOLD kiwifruit (a fruit high in ascorbic acid and carotenoids) with an iron fortified breakfast cereal meal increases iron status in women with low iron stores.</p> <p>Methods/Design</p> <p>Eighty nine healthy women aged 18-44 years with low iron stores (serum ferritin (SF) ≤ 25 μg/L, haemoglobin (Hb) ≥ 115 g/L) living in Auckland, New Zealand were randomised to receive an iron fortified breakfast cereal (16 mg iron per serve) and either two ZESPRI<sup>® </sup>GOLD kiwifruit or a banana (low ascorbic acid and carotenoid content) to eat at breakfast time every day for 16 weeks. Iron status (SF, Hb, C-reactive protein (CRP) and soluble transferrin receptor (sTfR)), ascorbic acid and carotenoid status were measured at baseline and after 16 weeks. Anthropometric measures, dietary intake, physical activity and blood loss were measured before and after the 16 week intervention.</p> <p>Discussion</p> <p>This randomised controlled intervention study will be the first study to investigate the effect of a dietary based intervention of an iron fortified breakfast cereal meal combined with an ascorbic acid and carotenoid rich fruit on improving iron status in women with low iron stores.</p> <p>Trial registration</p> <p>ACTRN12608000360314</p

    Wastewater irrigation: the state of play

    Full text link
    As demand for fresh water intensifies, wastewater is frequently being seen as a valuable resource. Furthermore, wise reuse of wastewater alleviates concerns attendant with its discharge to the environment. Globally, around 20 million ha of land are irrigated with wastewater, and this is likely to increase markedly during the next few decades as water stress intensifies. In 1995, around 2.3 billion people lived in water-stressed river basins and this could increase to 3.5 billion by 2025. We review the current status of wastewater irrigation by providing an overview of the extent of the practice throughout the world and through synthesizing the current understanding of factors influencing sustainable wastewater irrigation. A theme that emerges is that wastewater irrigation is not only more common in water-stressed regions such as the Near East, but the rationale for the practice also tends to differ between the developing and developed worlds. In developing nations, the prime drivers are livelihood dependence and food security, whereas environmental agendas appear to hold greater sway in the developed world. The following were identified as areas requiring greater understanding for the long-term sustainability of wastewater irrigation: (i) accumulation of bioavailable forms of heavy metals in soils, (ii) environmental fate of organics in wastewater-irrigated soils, (iii) influence of reuse schemes on catchment hydrology, including transport of salt loads, (iv) risk models for helminth infections (pertinent to developing nations), (v) microbiological contamination risks for aquifers and surface waters, (vi) transfer efficiencies of chemical contaminants from soil to plants, (vii) health effects of chronic exposure to chemical contaminants, and (viii) strategies for engaging the public.<br /
    corecore