72 research outputs found

    Surprises in the Orbital Magnetic Moment and g-Factor of the Dynamic Jahn-Teller Ion C_{60}^-

    Full text link
    We calculate the magnetic susceptibility and g-factor of the isolated C_{60}^- ion at zero temperature, with a proper treatment of the dynamical Jahn-Teller effect, and of the associated orbital angular momentum, Ham-reduced gyromagnetic ratio, and molecular spin-orbit coupling. A number of surprises emerge. First, the predicted molecular spin-orbit splitting is two orders of magnitude smaller than in the bare carbon atom, due to the large radius of curvature of the molecule. Second, this reduced spin-orbit splitting is comparable to Zeeman energies, for instance, in X-band EPR at 3.39KGauss, and a field dependence of the g-factor is predicted. Third, the orbital gyromagnetic factor is strongly reduced by vibron coupling, and so therefore are the effective weak-field g-factors of all low-lying states. In particular, the ground-state doublet of C_{60}^- is predicted to show a negative g-factor of \sim -0.1.Comment: 19 pages RevTex, 2 postscript figures include

    Light scattering from disordered overlayers of metallic nanoparticles

    Full text link
    We develop a theory for light scattering from a disordered layer of metal nanoparticles resting on a sample. Averaging over different disorder realizations is done by a coherent potential approximation. The calculational scheme takes into account effects of retardation, multipole excitations, and interactions with the sample. We apply the theory to a system similar to the one studied experimentally by Stuart and Hall [Phys. Rev. Lett. {\bf 80}, 5663 (1998)] who used a layered Si/SiO2_2/Si sample. The calculated results agree rather well with the experimental ones. In particular we find conspicuous maxima in the scattering intensity at long wavelengths (much longer than those corresponding to plasmon resonances in the particles). We show that these maxima have their origin in interference phenomena in the layered sample.Comment: 19 pages, 12 figure

    Complement Split Product C5a Mediates the Lipopolysaccharide‐Induced Mobilization of Cfu‐S and Haemopoietic Progenitor Cells, But Not the Mobilization Induced By Proteolytic Enzymes

    Get PDF
    Abstract. Intravenous (i.v.) injection of mice with lipopolysaccharide (LPS), and the proteolytic enzymes trypsin and proteinase, mobilizes pluripotent haemopoietic stem cells (CFU‐s) as well as granulocyte‐macrophage progenitor cells (GM‐CFU) and the early progenitors of the erythroid lineage (E‐BFU) from the haemopoietic tissues into the peripheral blood. We investigated the involvement of the complement (C) system in this process. It appeared that the early mobilization induced by LPS and other activators of the alternative complement pathway, such as Listeria monocytogenes (Lm) and zymosan, but not that induced by the proteolytic enzymes, was absent in C5‐deficient mice. the mobilization by C activators in these mice could be restored by injection of C5‐sufficient serum, suggesting a critical role for C5. The manner in which C5 was involved in the C activation‐mediated stem cell mobilization was studied using a serum transfer system. C5‐sufficient serum, activated in vitro by incubation with Lm and subsequently liberated from the bacteria, caused mobilization in both C5‐sufficient and C5‐deficient mice. C5‐deficient serum was not able to do so. the resistance of the mobilizing principle to heat treatment (56°C, 30 min) strongly suggests that it is identical with the C5 split product C5a, or an in vivo derivative of C5a. This conclusion was reinforced by the observation that a single injection of purified rat C5a into C5‐deficient mice also induced mobilization of CFU‐s. Copyrigh

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe

    Precipitation of Non-Spherical Particles in Aluminum Alloys Part I: Generalization of the Kampmann–Wagner Numerical Model

    No full text
    Particles precipitated during aging treatments often have non-spherical shapes, e.g., needles or plates, while in the classical Kampmann–Wagner Numerical (KWN) precipitation model, it is assumed that the particles are of spherical shape. This model is here generalized resulting in two correction factors accounting for the effects induced by the particles’ non-spherical shape on their growth kinetics. The first one is for the correction of the growth rate. It is derived from the approximate solution of the diffusion problem on spheroidal coordinate and verified by the three-dimensional numerical solutions for cuboid particles. The second factor is for the energetic correction due to the particle surface curvature. It is derived from chemical potential equality (or Gibbs energy minimization principle) at equilibrium for non-spherical particles and provides a correction factor for the Gibbs–Thomson effect. In the accompanying paper, the two correction factors are implemented into a multi-component KWN modeling framework, and the resulting improvements on the model’s predictive power are demonstrated
    corecore