1,145 research outputs found

    Lateral phase separation of confined membranes

    Full text link
    We consider membranes interacting via short, intermediate and long stickers. The effects of the intermediate stickers on the lateral phase separation of the membranes are studied via mean-field approximation. The critical potential depth of the stickers increases in the presence of the intermediate sticker. The lateral phase separation of the membrane thus suppressed by the intermediate stickers. Considering membranes interacting with short and long stickers, the effect of confinement on the phase behavior of the membranes is also investigated analytically

    A machine vision system for forensic analysis

    Get PDF
    Human skeletal remains are analysed by forensic anthropologists in order to draw conclusions about the probable identity of the deceased. During the analysis, the skull is used, along with other bones, to help determine the identity of the decedent. If only the base of the skull is available, forensic researchers take manual measurements from the large oval aperture in this region, the foramen magnum, in order to obtain information about the gender of the deceased. As this operation requires human intervention, the measurements are affected by the bias introduced by the human operator. The aim of this paper is to describe a full machine vision solution to perform precise morphological measurements of the foramen magnum. The system has been designed to extract measurements from 2D and 3D data and the returned results accurately match the manual measurements

    Ward-based Goal-Directed Fluid Therapy (GDFT) in Acute Pancreatitis (GAP) trial: study protocol for a feasibility randomised controlled trial

    Get PDF
    IntroductionAcute pancreatitis is an inflammatory disease of the pancreas with high risk of developing multiorgan failure and death. There are no effective pharmacological interventions used in current clinical practice. Maintaining fluid and electrolyte balance is the mainstay of supportive management. Goal-directed fluid therapy (GDFT) has been shown to decrease morbidity and mortality in surgical conditions with systemic inflammatory response. There is currently no randomised controlled trial (RCT) investigating the role of GDFT based on cardiac output parameters in patients with acute pancreatitis in the ward setting. A feasibility trial was designed to determine patient and clinician support for recruitment into an RCT of ward-based GDFT in acute pancreatitis, adherence to a GDFT protocol, safety, participant withdrawal, and to determine appropriate endpoints for a subsequent larger trial to evaluate efficacy.Methods and analysisThe GDFT in Acute Pancreatitis trial is a prospective two-centre feasibility RCT. Eligible adults admitted with new onset of acute pancreatitis will be enrolled and randomised into ward-based GDFT (n=25) or standard fluid therapy (n=25) within 6 hours from the diagnosis and continuing for the following 48 hours. Cardiac output parameters will be monitored with a non-invasive device (Cheetah NICOM; Cheetah Medical). The intervention group will consist of a protocolised GDFT approach consisting of stroke volume optimisation with crystalloid fluid boluses, while the control group will receive standard care fluid therapy as advised by the clinical team. The primary endpoint is feasibility. Secondary endpoints will include safety of the intervention, complications, mortality, admission to intensive care unit, cost and quality of life.Ethics and disseminationEthics approval was granted by the London Central Research Ethics Committee (17/LO/1235, project ID: 221872). The results of this trial will be presented to international conference with interest in general surgery and acute care and published in a peer-reviewed journal.Trial registration numberISRCTN36077283.</jats:sec

    Quantifying The Causes of Differences in Tropospheric OH within Global Models

    Get PDF
    The hydroxyl radical (OH) is the primary daytime oxidant in the troposphere and provides the main loss mechanism for many pollutants and greenhouse gases, including methane (CH4). Global mean tropospheric OH differs by as much as 80% among various global models, for reasons that are not well understood. We use neural networks (NNs), trained using archived output from eight chemical transport models (CTMs) that participated in the POLARCAT Model Intercomparison Project (POLMIP), to quantify the factors responsible for differences in tropospheric OH and resulting CH4 lifetime (τCH4) between these models. Annual average τCH4, for loss by OH only, ranges from 8.0–11.6 years for the eight POLMIP CTMs. The factors driving these differences were quantified by inputting 3-D chemical fields from one CTM into the trained NN of another CTM. Across all CTMs, the largest mean differences in τCH4 (ΔτCH4) result from variations in chemical mechanisms (ΔτCH4 = 0.46 years), the photolysis frequency (J) of O3→O(1D) (0.31 years), local O3 (0.30 years), and CO (0.23 years). The ΔτCH4 due to CTM differences in NOx (NO + NO2) is relatively low (0.17 years), though large regional variation in OH between the CTMs is attributed to NOx. Differences in isoprene and J(NO2) have negligible overall effect on globally averaged tropospheric OH, though the extent of OH variations due to each factor depends on the model being examined. This study demonstrates that NNs can serve as a useful tool for quantifying why tropospheric OH varies between global models, provided essential chemical fields are archived

    The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of β-caryophyllene secondary organic aerosol

    Get PDF
    The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of secondary organic aerosol (SOA) formed during the chamber photo-oxidation of β-caryophyllene/NO<sub>x</sub> mixtures were investigated. Nucleation of β-caryophyllene SOA particles occurred almost immediately after oxidation was initiated and led to the formation of fresh SOA with a relatively simpler composition than has been reported for monoterpenes. The SOA yield values ranged from 9.5–26.7% and 30.4–44.5% using a differential mobility particle sizer (DMPS) and an aerosol mass spectrometer (AMS) mass based measurements, respectively. A total of 20 compounds were identified in the SOA by LC-MS/MS, with the most abundant compounds identified as β-caryophyllonic acid and β-caryophyllinic acid/β-nocaryophyllonic acid. The O:C and H:C elemental ratios of products identified in the condensed phase ranged from 0.20 to 1.00 and 1.00 to 2.00, with average values of 0.39 and 1.58, respectively. The increase in the O:C ratio was associated with a decrease in the saturation concentration of the identified compounds. The compounds identified in the lower initial concentration experiments were more oxidised compared to those that were found to be more abundant in the higher initial concentration experiments with average O:C ratios of 0.51 and 0.27, respectively. Photochemical ageing led to a more complex SOA composition with a larger contribution coming from lower molar mass, higher generation products, where both double bonds had been oxidised. This effect was more evident in the experiments conducted using the lower initial precursor concentration; a finding confirmed by the temporal behaviour of key organic mass fragment measured by an Aerosol Mass Spectrometer. Although the composition changed with both initial precursor concentration and ageing, this had no significant measurable effect on the hygroscopic properties of the SOA formed. The latter finding might have been influenced by the difference in pre-treatment of the semivolatile-containing particles prior to their measurements

    Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    Get PDF
    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65–89%, volatile organic compound-to-NOx or VOC / NOx ~3–9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26–39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally isoprene-emitting plants was less than would be expected from published single-VOC experiments, if co-emitted species were solely responsible for the final SOA mass. Interpretation of the results obtained from the fig data sets leaves room for a potential role for isoprene in inhibiting SOA formation under certain ambient atmospheric conditions, although instrumental and experimental constraints impose a level of caution in the interpretation of the results. Concomitant gas- and aerosol-phase composition measurements also provide a detailed overview of numerous key oxidation mechanisms at work within the systems studied, and their combined analysis provides insight into the nature of the SOA formed

    Gifted and talented education: The English policy highway at a crossroads?

    Get PDF
    Copyright © 2013 by Sage Publications. This is the author's accepted manuscript. The final published article is available from the link below.In 1999, the British government launched an education program for gifted and talented pupils as part of its Excellence in Cities initiative (EiC) that was initially designed to raise the educational achievement of very able pupils in state-maintained secondary schools in inner-city areas. Although some activities targeting gifted children had already been initiated by various voluntary organizations over several previous decades, this was the first time that the topic of improved provision for these pupils had been placed firmly within the national agenda. This article provides the background to the English gifted and talented policy “highway” and an overview of what was expected of schools. How practitioners responded to the policy, their beliefs and attitudes toward identifying gifted and talented pupils, and the opportunities and challenges that arose along the way to the current crossroads are explored. The need to empower teachers to feel more confident in classroom provisions for gifted and talented pupils is identified along with the potentially pivotal role of action research and “pupil voice” in the process of continued professional development and support

    Intercomparison and Evaluation of Satellite Peroxyacetyl Nitrate Observations in the Upper Troposphere-Lower Stratosphere

    Get PDF
    Peroxyacetyl nitrate (PAN) is an important chemical species in the troposphere as it aids the long-range transport of NOx and subsequent formation of O3 in relatively clean remote regions. Over the past few decades observations from aircraft campaigns and surface sites have been used to better understand the regional distribution of PAN. However, recent measurements made by satellites allow for a global assessment of PAN in the upper troposphere-lower stratosphere (UTLS). In this study, we investigate global PAN distributions from two independent retrieval methodologies, based on measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board Envisat from the Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, and the Department of Physics and Astronomy, University of Leicester (UoL). Retrieving PAN from MIPAS is challenging due to the weak signal in the measurements and contamination from other species. Therefore, we compare the two MIPAS datasets with observations from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), in situ aircraft data and the 3-D chemical transport model TOMCAT. MIPAS shows peak UTLS PAN concentrations over the biomass burning regions (e.g. ranging from 150 to \u3e 200 pptv at 150 hPa) and during the summertime Asian monsoon as enhanced convection aids the vertical transport of PAN from the lower atmosphere. At 150 hPa, we find significant differences between the two MIPAS datasets in the tropics, where IMK PAN concentrations are larger by 50-100 pptv. Comparisons between MIPAS and ACE-FTS show better agreement with the UoL MIPAS PAN concentrations at 200 hPa, but with mixed results above this altitude. TOMCAT generally captures the magnitude and structure of climatological aircraft PAN profiles within the observational variability allowing it to be used to investigate the MIPAS PAN differences. TOMCAT-MIPAS comparisons show that the model is both positively (UoL) and negatively (IMK) biased against the satellite products. These results indicate that satellite PAN observations are able to detect realistic spatial variations in PAN in the UTLS, but further work is needed to resolve differences in existing retrievals to allow quantitative use of the products. © Author(s) 2016

    Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment

    Get PDF
    The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed

    Non-classical ProIL-1beta activation during mammary gland infection is pathogen-dependent but caspase-1 independent

    Get PDF
    Infection of the mammary gland with live bacteria elicits a pathogen-specific host inflammatory response. To study these host-pathogen interactions wild type mice, NF-kappaB reporter mice as well as caspase-1 and IL-1beta knockout mice were intramammarily challenged with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The murine mastitis model allowed to compare the kinetics of the induced cytokine protein profiles and their underlying pathways. In vivo and ex vivo imaging showed that E. coli rapidly induced NF-kappaB inflammatory signaling concomitant with high mammary levels of TNF-alpha, IL-1 alpha and MCP-1 as determined by multiplex analysis. In contrast, an equal number of S. aureus bacteria induced a low NF-kappaB activity concomitant with high mammary levels of the classical IL-1beta fragment. These quantitative and qualitative differences in local inflammatory mediators resulted in an earlier neutrophil influx and in a more extensive alveolar damage post-infection with E. coli compared to S. aureus. Western blot analysis revealed that the inactive proIL-1beta precursor was processed into pathogen-specific IL-1beta fragmentation patterns as confirmed with IL-1beta knockout animals. Additionally, caspase-1 knockout animals allowed to investigate whether IL-1beta maturation depended on the conventional inflammasome pathway. The lack of caspase-1 did not prevent extensive proIL-1beta fragmentation by either of S. aureus or E. coli. These non-classical IL-1beta patterns were likely caused by different proteases and suggest a sentinel function of IL-1beta during mammary gland infection. Thus, a key signaling nodule can be defined in the differential host innate immune defense upon E. coli versus S. aureus mammary gland infection, which is independent of caspase-1
    corecore