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Abstract. The effect of photochemical ageing and initial pre-
cursor concentration on the composition and hygroscopic
properties of secondary organic aerosol (SOA) formed dur-
ing the chamber photo-oxidation ofβ-caryophyllene/NOx
mixtures were investigated. Nucleation ofβ-caryophyllene
SOA particles occurred almost immediately after oxidation
was initiated and led to the formation of fresh SOA with
a relatively simpler composition than has been reported
for monoterpenes. The SOA yield values ranged from 9.5–
26.7 % and 30.4–44.5 % using a differential mobility particle
sizer (DMPS) and an aerosol mass spectrometer (AMS) mass
based measurements, respectively. A total of 20 compounds
were identified in the SOA by LC-MS/MS, with the most
abundant compounds identified asβ-caryophyllonic acid and
β-caryophyllinic acid/β-nocaryophyllonic acid. The O : C
and H : C elemental ratios of products identified in the con-
densed phase ranged from 0.20 to 1.00 and 1.00 to 2.00, with
average values of 0.39 and 1.58, respectively. The increase
in the O : C ratio was associated with a decrease in the satu-
ration concentration of the identified compounds. The com-
pounds identified in the lower initial concentration experi-
ments were more oxidised compared to those that were found
to be more abundant in the higher initial concentration exper-

iments with average O : C ratios of 0.51 and 0.27, respec-
tively. Photochemical ageing led to a more complex SOA
composition with a larger contribution coming from lower
molar mass, higher generation products, where both double
bonds had been oxidised. This effect was more evident in the
experiments conducted using the lower initial precursor con-
centration; a finding confirmed by the temporal behaviour of
key organic mass fragment measured by an Aerosol Mass
Spectrometer. Although the composition changed with both
initial precursor concentration and ageing, this had no sig-
nificant measurable effect on the hygroscopic properties of
the SOA formed. The latter finding might have been influ-
enced by the difference in pre-treatment of the semivolatile-
containing particles prior to their measurements.

1 Introduction

Despite being subject to fewer studies than monoterpenes
(C10H16), sesquiterpenes (C15H24) are important hydrocar-
bons owing to their high aerosol yields (Griffin et al., 1999)
and significant emissions from a wide variety of plant species
(Arey et al., 1995; Helmig et al., 2007; Hansen and Seufert,
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2003). Sesquiterpenes are a class of biogenic hydrocarbons
that comprise three isoprene (C5H10) units and they have
been observed in significant abundance in the atmospheres
of many forests around the world (Arey et al., 1991; Helmig
et al., 2007; Misztal et al., 2011; Goldstein and Galbally,
2007). Examples of sesquiterpenes observed in the forest at-
mosphere include compounds such asβ-caryophyllene,α-
humulene and longifolene (Arey et al., 1991; König et al.,
1995; Turlings and Tumlinson, 1992). Helmig et al. (2007)
found that sesquiterpene emissions from a variety of pine
tree species are as much as 29 % of the monoterpene emis-
sions.β-Caryophyllene is one of the most reactive and abun-
dant sesquiterpenes (Hansen and Seufert, 2003; Helmig et
al., 2007; Jaoui et al., 2007; Goldstein and Galbally, 2007).
It has two double bonds (one endocyclic and one exocyclic)
and has high reactivity towards ozone, hydroxyl and nitrate
radicals. Under typical tropospheric conditions, the lifetime
of β-caryophyllene with respect to O3, NO3 and OH has
been estimated to be 2, 3 and 53 min, respectively (Atkin-
son and Arey, 2003). Owing to the high molar mass of its
oxidation products,β-caryophyllene has a high potential to
contribute to secondary organic aerosol (SOA) mass in the
atmosphere. The two reactive double bonds provide more
than one point for potential chemical reactions to occur,
leading to products with more functional groups and lower
vapour pressures. Studies have shown that the aerosol yield
(mass of SOA formed per mass of hydrocarbon consumed)
of β-caryophyllene ranges (depending on experimental con-
ditions) from 5 to 46 % for ozonolysis and 17 to 68 % for
reactions with OH (Lee et al., 2006a; Griffin et al., 1999;
Jaoui et al., 2003; Winterhalter et al., 2009; Ng et al., 2006).
β-Caryophyllene SOA has also been shown to be an impor-
tant contributor to PM2.5 mass in certain environments, e.g.
boreal forests (Parshintsev et al., 2008), and in the southeast-
ern United States (Jaoui et al., 2007; Kleindienst et al., 2007).
More specifically it has been estimated that approximately 1–
10 % of the organic aerosol mass in the southeastern and mid-
western United States is made up ofβ-caryophyllene SOA
(Kleindienst et al., 2007; Lewandowski et al., 2008).

Several smog chamber studies have investigated the chem-
ical composition of secondary organic aerosol formed dur-
ing dark, seedlessβ-caryophyllene ozonolysis experiments
(Jaoui et al., 2003; Winterhalter et al., 2009; Li et al.,
2011; Kanawati et al., 2008), with some quantitative yield
information reported by Jaoui el al. (2003) and Li et
al. (2011). Jaoui et al. (2003) presented a comprehensive
β-caryophyllene ozonolysis study, which included identi-
fication and speciation of 17 compounds in both the gas
and particulate phases and reported their total carbon yield
to be 65 % (for all identified compounds in both phases).
The study identifiedβ-caryophyllinic acid as a condensed
phase tracer forβ-caryophyllene oxidation. Jaoui and col-
leagues also reported in the same study that the main con-
densed phase products ofβ-caryophyllene ozonolysis were
two semi-volatile ketoaldehydes;β-caryophyllene aldehyde

(molar mass= 236 g mol−1) and β-nocaryophyllene alde-
hyde (238 g mol−1). Both compounds have low volatility and
can readily form particles. In fact, the latter was positively
identified and quantified in ambient samples collected at a
forest in Finland (Parshintsev et al., 2008). Most recently Li
et al. (2011) have argued that previousβ-caryophyllene ox-
idation experiments were ozone limited and as a result fo-
cused mostly on first generation oxidation products. They
conducted dark ozonolysis experiments ofβ-caryophyllene
under conditions of excess ozone and reported 15 particle-
phase products. Of these, 9 were shown to be second gener-
ation products and were estimated to account for 90 % of the
mass of the 15 identified products. These results were con-
sistent with an earlier study conducted by Ng et al. (2006)
who observed (under both ozonolysis and photo-oxidation
conditions) aerosol growth to continue after all of the precur-
sorβ-caryophyllene had been consumed, demonstrating the
importance of second- or higher-generation reactions.

The studies cited above reported investigations of the
speciated chemical composition ofβ-caryophyllene SOA
formed under dark ozonolysis conditions. Recently, Chan
et al. (2011) have studied SOA formation from the photo-
oxidation ofβ-caryophyllene/NOx mixtures in the presence
of sulphuric acid/ammonium sulphate seeds. They reported
detection of about 50 multifunctional species, containing
acid, oxo, hydroxyl and nitro-oxy groups, and also a num-
ber of organosulphates; and found the SOA yield and com-
position were sensitive to aerosol acidity, providing evi-
dence for acid-catalysed chemistry in the condensed phase.
In the present paper, a study of the photo-oxidation ofβ-
caryophyllene/NOx mixtures is also reported, but with the
aim of investigating the effect of photochemical ageing on
the chemical composition and hygroscopic properties of the
SOA, generated in the absence of a seed aerosol. In addi-
tion, the influence of the initial precursor mixing ratio on the
physiochemical properties of the formed SOA is reported.

2 Experimental methods

2.1 Reaction chamber

Experiments were conducted in the photochemical aerosol
reaction chamber at the University of Manchester. The de-
sign of the chamber and its operation will only be reported
in brief here, as a full technical description of the facility can
be found in a separate publication (McFiggans et al., 2012).

The Manchester aerosol chamber is run as a batch reac-
tor where the composition of the gaseous precursors, oxidis-
ing environment, optional pre-existing seed, relative humid-
ity and temperature are controlled. The chamber comprises
an 18 m3 (3 m (H ) × 3 m (L) × 2 m (W )) FEP Teflon bag
mounted on three horizontal rectangular aluminium frames.
The central rigid frame is fixed, with the upper and lower
frames free to move vertically, allowing the bag to expand
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and collapse as sample air is introduced and extracted. A
series of halogen lamps and a 6 kW Xenon arc lamp are
mounted on the inside of the enclosure housing the bag,
which is coated with reflective “space blanket”, serving to
maximise the irradiance in the bag and to ensure even illumi-
nation. The combination of illumination has been tuned and
evaluated to mimic the atmospheric actinic spectrum over the
wavelength range 290–800 nm, and has a maximum total ac-
tinic flux of 0.7× 1018 (photos s−1 m−2 nm−1) over the re-
gion 460–500 nm. The calculatedj (O1D) value during the
reported experiments was 3.6× 10−5 s−1 (290–340 nm).

The air supply into the chamber is dried and filtered for
gaseous impurities and particles using a series of Purafil (Pu-
rafil Inc., USA), charcoal and HEPA (Donaldson Filtration)
filters, prior to humidification with ultrapure deionised wa-
ter. Precursors are introduced into the bag via injection into
a heated glass bulb, which is continually flushed with a flow
of filtered, high purity nitrogen (ECD grade, 99.997 %). The
required concentration of NOx is controlled by injection of
NO2 from a cylinder into the charge line.

Relative humidity (RH) and temperature are measured at
several points throughout the chamber (by dewpoint hygrom-
eter and a series of cross-calibrated thermocouples and resis-
tance probes), and are controlled by diverting air through the
inlet humidification circuit when filling the bag and by con-
trolling the setpoint of the air conditioning, which feeds the
airspace between the bag and its enclosure. This mechanism
is employed to control conditions throughout the experiment.
Cycling between experiments is facilitated by full computer
control and monitoring of key chamber conditions. Pre- and
post-experiment cleaning processes consist of an overnight
soaking at high mixing ratios of ozone (2–2.5 ppmV, supplied
by a high capacity ozone generator), and a series of automatic
fill/flush cycles with 3 m3 min−1 flow of scrubbed, dried and
rehumidified air, achieved by control of electro-pneumatic
valves. Each cycle takes approximately 12 min and cleaning
is normally achieved after approximately 6 cycles.

2.2 Experiment methodology

β-caryophyllene SOA was formed in standard nucleation ex-
periments, involving the photo-oxidation ofβ-caryophyllene
(Aldrich, purity not specified) in the presence of NOx. Iden-
tical experiments were repeated and stopped at different
elapsed times after lights on, in this case after 2 and 6 h.
At the end of each experiment the majority of the air in
the chamber was passed through a filter for the collection
of SOA and subsequent off-line analysis. Experiments were
carried out at two different nominal initial precursor mixing
ratios of 50 and 250 ppbV in order to study the effect of ini-
tial precursor concentration on SOA properties and composi-
tion. VOC measurements (described in Sect. 2.3) were made
during several low concentration experiments and measured
initial VOC mixing ratios are reported in Tables 1a and b.
However, measurements were only made during two of the

higher initial concentration experiments and showed that ap-
proximately 140 ppbV was present in the chamber at the start
of each experiment. It is not possible, from the available data,
to verify whether this was a result of (i) poor transfer of the
VOC into the chamber at the higher concentration conditions
which could have also affected all other similar experiments
or (ii) injection problems specific to those two experiments.
Therefore, the two different starting conditions will be re-
ferred to in the manuscript as “lower” and “higher” initial
concentrations. An overview of the conditions used in each
experiment is given in Tables 1a and b. A background level
of around 10 ppbV of NO was present in this study (sub-
sequent experiments have achieved an NO background of
around 1 ppbV).

2.3 On-line measurements

Real-time broad chemical characterisation of the SOA was
made using a compact Time-of-Flight Aerosol Mass Spec-
trometer (cTOF-AMS, Aerodyne Research Inc., USA). A de-
tailed description of the instrument, its operation and cal-
ibrations can be found elsewhere (Drewnick et al., 2005;
Canagaratna et al., 2007). The instrument was operated in
the standard configuration, taking both mass spectrum (MS)
and particle-time-of-flight (PToF) data, and was calibrated
for ionisation efficiency using 350 nm monodisperse ammo-
nium nitrate particles. The vapouriser was set at approxi-
mately 600◦C and data was collected at a time resolution of
2 min. A collection efficiency value of unity was applied to
this data, based on evidence from a previous chamber study
(Alfarra et al., 2006).

A Differential Mobility Particle Sizer (DMPS) was used to
measure the aerosol number size distribution between 20 nm
and 500 nm (Williams et al., 2007). The DMPS performed
a complete mobility scan every 10 min, which allowed ade-
quate sampling time for each mobility size. The DMPS was
composed of a Vienna-design differential mobility analyser
(DMA) (Winklmayr et al., 1991), and a condensation particle
counter (3010 CPC, TSI Inc., USA).

A Hygroscopicity Tandem Differential Mobility Analyser
(HTDMA) was used to measure on-line size resolved water
uptake at 90 % RH. A technical description of the instrument
was provided in other publications (Good et al., 2010a; Cu-
bison et al., 2006). Briefly, the HTDMA dries the aerosol
sample to< 10 % RH using a Nafion® drier (Perma Pure,
MD-110-12, Toms River, NJ, USA). A DMA (BMI, Hay-
wood, CA, USA) selects particles of a single mobility. In
this work, diameters chosen were larger than the mode of
the number size distribution, thus avoiding the sampling of
a significant fraction of multi-charged particles. The sample
is then humidified to 90 % RH using a humidifier, compris-
ing a Gore-Tex® tube running through a controlled humid
counter-flow of air. The humidified size selected sample is
then passed through a residence coil for 15 s. A second DMA
(BMI, Haywood, CA, USA) and CPC (TSI, 3782) are then
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Table 1a.Initial experimental conditions including measured VOC mixing ratios and calculated SOA yields.

DMPS AMS

Exp
Date

[VOC]0
ppbV

NOx
ppbV

VOC/
NOx

T (◦C)
(SD2)

RH
(%)
(SD2)

1[VOC]
ppbV

1[VOC]
µg m−3

MP
µg m−3

Peak
Time
min

YSOA
%

YSOA
%

1[VOC]
µg m−3

MP
µg m−3

Peak
Time
min

06/11/07 139.9 1251 1.1 NA NA 137.7 1154.6 128.8 334 11.2NA 1154.6 NA NA

25/06/08 48.8 34.4 1.4 25.7
(0.8)

69.7
(1.1)

44.8 373.8 35.6 59 9.5 31.2 338.5 105.7 38

26/06/08 52.4 27.8 1.9 25.9
(0.4)

71.4
(0.9)

40.8 340.2 53.2 61 15.6 30.4 330.6 100.4 49

30/06/08 31.1 26.8 1.2 25.5
(0.4)

71.4
(1.6)

20.0 167.6 44.7 41 26.7 44.5 193.3 86.0 45

03/07/08 42.7 55.1 0.8 26.0
(0.5)

71.4
(1.2)

39.7 332.7 66.2 59 19.9 43.8 282.2 123.7 33

04/07/08 48.0 52.9 0.9 25.9
(0.7)

70.9
(1.3)

43.1 361.3 60.7 55 16.8 32.5 329.4 107.1 37

10/07/08 48.1 74.7 0.6 25.6
(0.4)

71.9
(1.7)

41.8 348.9 65.8 40 18.9 NA 348.9 NA NA

NA = No data available;1 Nominal concentration values estimated based on the amount introduced into the chamber without accounting for losses;2 Standard deviation.

Table 1b. Initial experimental conditions and peak mass concentrations for experiments where SOA yield values were not possible to
calculate.

Exp Date [VOC]0
ppbV

NOx
ppbV

VOC/
NOx

T

(◦C)
(SD)

RH
(%)
(SD)

DMPS
Peak SOA
µg m−3

AMS Peak
SOA
µg m−3

05/11/07 39.3 25∗ 1.6 NA NA NA NA

20/11/07 39.3 25∗ 1.6 NA NA NA NA

21/11/07 144.2 125∗ 1.2 NA NA NA NA

12/03/08 50∗ 33.6 1.5 25.3
(0.2)

53.9
(0.6)

> 21.6 69.7

13/03/08 250∗ 116.8 2.1 24.9
(0.3)

49.4
(0.6)

> 130.3 303.7

10/04/08 250∗ 130.3 1.9 24.7
(0.1)

49.2
(0.2)

> 125.3 NA

16/04/08 250∗ 128.4 1.9 26.1
(0.3)

44.4
(0.7)

220.0 216.2

23/04/08 50∗ 31.4 1.6 25.4
(0.3)

53.4
(0.7)

50.1 55.6

24/04/08 50∗ 28.2 1.8 25.4
(0.4)

47.9
(0.9)

65.6 NA

28/05/08 250∗ 119.5 2.1 28.4
(1.0)

57.5
(2.6)

238.2 258.6

29/05/08 50∗ 36.7 1.4 23.8
(0.9)

75.2
(1.5)

59.9 77.8

05/06/08 50∗ 22.8 2.2 23.4
(0.5)

75.3
(1.2)

NA 51.6

NA = No data available;∗ Nominal concentration values estimated based on the amount introduced into the
chamber without accounting for losses.
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used to measure the size distribution of the humidified sam-
ple. The operating procedure of the HTDMA was validated
by sampling ammonium sulphate and sodium chloride test
aerosols, following the operating procedures described by
Good et al. (2010a). The data was inverted using the method
described by Gysel et al. (2009). The data from the HT-
DMA is reported in terms of the hygroscopic growth factor
(GFD0,RH), the wet particle diameter at a given RH divided
by the particle’s dry diameter (D0).

The cloud condensation nuclei (CCN) activity of the parti-
cles was characterised using a continuous flow CCN counter
(Droplet Measurement Technologies, USA) combined with
a Vienna style DMA (Winklmayr et al., 1991) and a parti-
cle counter TSI 3010 CPC. The DMA was used to generate
monodisperse aerosol in the size range between 20 nm and
500 nm dry diameter. These particles were directed in paral-
lel to the CPC and CCN counters. The inlet flow in the CCN
counter was 0.5 lpm and it was operated at different supersat-
urations in the range between 0.07 % and 1 % for each par-
ticle size. The calibration and quality assurance procedures
carried out for this setup is described in Good et al. (2010a).
Using the instrumental set-up described above CCN and CN
number size distributions were measured at1T ’s equivalent
to super-saturations between 0.07 % and 1.0 %. The CCN
and CN number size distributions were then inverted to ac-
count for charging efficiency and multiple charging (Good et
al., 2010a). The inverted number size distributions were then
used to calculate the activated fraction (CCN/CN) as a func-
tion of dry size. Sigmoidal functions were then fitted to the
activation curves, from which the dry diameter at which 50 %
of the particles were activated was calculated. Given that the
aerosol is internally mixed the diameter at which 50 % of the
particles activate is judged to be the dry diameter at which
the particles are activated as CCN at the set-point super-
saturation (Good et al., 2010b).κ-values are then derived
from the CCN measurements on the chamber by iteratively
finding κ from theκ-Kohler equation (Petters and Kreiden-
weis, 2007) given that the critical super-saturation and dry
diameter are known from the measurements.

NO and NO2 mixing ratios were measured using a chemi-
luminescence gas analyser (Model 42i, Thermo Scientific,
MA, USA). Ozone was measured using a UV photometric
gas detector (Model 49C, Thermo Scientific, MA, USA).

The gas phase organic compounds within the chamber
were measured using Chemical Ionisation Reaction Time-of-
Flight Mass Spectrometry (CIR-TOF-MS). This technique
has been described in detail elsewhere (Wyche et al., 2007;
Jenkin et al., 2012). The CIR-TOF-MS instrument comprises
a bespoke, temperature controlled (40◦C± 1◦C) radioactive
(241Am) ion source/drift tube assembly, coupled via a system
of ion transfer optics to an orthogonal time-of-flight mass
spectrometer (Kore Technology, UK). In this instance, hy-
drated hydronium ions (H3O+

· (H2O)), generated from a hu-
midified N2 carrier gas (purity= 99.9999 %), were employed
as the primary chemical ionisation reagent. Ion-molecule re-

action between the analyte VOC/OVOC, M, and the hy-
drated hydronium ion will yield a protonated VOC/OVOC
product ion (MH+) for mass spectrometric analysis, provid-
ing the analyte has a proton affinity greater than that of the
water dimer (808 kJ mol−1). Depending on the energies in-
volved and chemical structure of the VOC/OVOC analyte,
the MH+ product may undergo fragmentation to produce cer-
tain daughter ions. The CIR-TOF-MS was calibrated using
various methods, including: (i) stepwise dilution and mea-
surement of a commercially sourced gas standard (BOC Spe-
cial Gases, UK); (ii) analysis of gas standards generated
from permeation tubes (Eco-Scientific Ltd, UK and Vici Inc.,
USA) using a commercial calibration and humidification unit
(Kintec, model 491) and (iii) analysis of 10 l Teflon sample
bags (SKC Inc. USA) following liquid injection of the tar-
get VOC/OVOC into a nitrogen matrix. Mass spectrometric
data were recorded by the CIR-TOF-MS over the range 0
and 300 Da with a time resolution of 1 min. All mass spectra
were normalised with respect to the reagent ion signal and
were background subtracted.

2.4 Off-line analysis ofβ-caryophyllene SOA

Aerosol samples were collected onto pre-fired quartz filters,
placed into clean glass vials sealed with parafilm and stored
in a freezer at−18◦C until analysis. A bespoke filter holder
was positioned in the chamber vent line to allow the en-
tire chamber content to be sampled onto the filter in a few
min at a nominal flow of 3 m3 min−1. Filter samples were
analysed using a method described previously (Hamilton et
al., 2008). Briefly; filter samples were extracted into 5 ml of
HPLC grade water. The sample vial was wrapped in foil to
avoid any possible degradation and left for two hours. This
was sonicated for one hour and the extraction was filtered us-
ing a 0.45 mm PVDF syringe filter (Whatman). Extracts were
evaporated to dryness using a V10 vacuum solvent evapo-
rator (Biotage, Sweden) at 30◦C and the residue was re-
dissolved in 1 ml of a 50 : 50 solution of HPLC-MS grade
water and methanol.

Liquid Chromatography Mass Spectrometry (LC-MS/MS)
analysis was performed on the extracted sample using a HCT
Plus ion trap mass spectrometer (Bruker Daltonics GmbH,
Bremen, Germany) equipped with an Eclipse ODS-C18 col-
umn with 5 µm particle size (Agilent, 4.6 mm× 150 mm).
Samples (60 µl) were injected via an auto sampler (Agilent
1100 series) and a binary gradient elution was performed us-
ing (a): 0.1 % formic acid in HPLC-MS grade water (100
to 40 % over 40 min, hold for 10 min, return to starting con-
ditions) and (b): HPLC grade methanol, at a flow rate of
0.6 mlpm. Electrospray ionisation (ESI) was carried out at
300◦C, with a nebuliser pressure of 70 psi and nitrogen dry
gas flow rate of 12 lpm. The mass spectrometer was used in
both positive and negative ion mode, scanning fromm/z 50
to 600. The automated MS/MS function from the Esquire
software (Bruker Daltonics GmbH, Bremen, Germany) was
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used to fragment ions, where the two most abundant ions at
each scan were subjected to collision-induced dissociation
(CID).

3 Results and discussion

3.1 β-caryophyllene SOA formation characteristics

During all experiments conducted in this study,β-
caryophyllene SOA was rapidly formed within a few min-
utes of the start of photochemistry (lights on), producing to-
tal particle number concentrations in the range of 25× 103 to
35× 103 p/cc and variable peak mass concentration depend-
ing on the initial conditions (see Tables 1a and b). The top
panel in Fig. 1 shows the temporal profile of the decay of
β-caryophyllene and the production of a first generation gas
phase product (identified asm/z 237). The bottom panel in
the same figure shows the rapid formation of the correspond-
ing particle number and mass concentrations.

Particle volume measurements obtained from the DMPS
were multiplied by aβ-caryophyllene SOA density factor
of 1.3 (Bahreini et al., 2005; Varutbangkul et al., 2006) in
order to provide the SOA mass concentrations formed dur-
ing each experiment. Additionally, total mass concentrations
were also obtained using the cTOF-AMS. Both sets of mea-
surements are listed in Tables 1a and b together with those
of β-caryophyllene and NOx mixing ratios. The DMPS re-
sults show that a peak SOA mass of 129–238 µg m−3 was
achieved under the higher concentration conditions, whereas
a peak of 36–66 µg m−3 was achieved under the lower con-
centration conditions. On the other hand, the AMS measured
higher peak SOA masses, in the range 216–304 µg m−3 and
52–124 µg m−3 during the higher and lower concentration
experiments, respectively.

Using these mass values along with the corresponding
quantity of β-caryophyllene reacted and Eq. (1), an SOA
yield may be obtained:

YSOA =
MP

1VOC
(1)

Where: YSOA = SOA mass yield,MP = peak SOA mass
(µg m−3) and 1VOC= β-caryophyllene reacted (µg m−3).
Table 1a lists the SOA yields obtained for those experiments
for which both gas and particle phase data were available.
From inspection of Table 1a it can be seen that the DMPS-
based SOA yield for the lower concentration experiments
ranged from 9.5–26.7 %, and that a yield value of 11.2 %
was obtained for the single higher concentration experiment
for which data was available. However, the AMS-based SOA
yield values were a factor of 1.7–3.3 higher than those ob-
tained using the DMPS measurements (ranging from 30.4–
44.5 %). A possible explanation for the discrepancies be-
tween the DMPS and AMS mass measurements is the dif-
ference in pre-treatment of the semivolatile-containing par-
ticles prior to the instrumentation. The DMPS sample was

41 
 

Figure 1: Evolution of basic gas and condensed phase measurements during the photo-

oxidation of β-caryophyllene. The SOA mass concentration shown in the bottom panel was 

measured using a differential mobility analyser (DMPS). The molecular structure of β-

caryophyllene is shown in the top panel.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Evolution of basic gas and condensed phase measurements
during the photo-oxidation ofβ-caryophyllene. The SOA mass con-
centration shown in the bottom panel was measured using a differ-
ential mobility particle sizer (DMPS). The molecular structure of
β-caryophyllene is shown in the top panel.

subjected to a dry sheath air (RH< 10 %), while the AMS
sample was not dried. Section 3.5 provides further discus-
sion of the possible presence of semi-volatile material in
these samples. It should be noted that as no wall loss cor-
rections were applied to the gas or particle phase data and
as the semi-volatiles are believed to partition rapidly to the
condensed phase, the SOA yields presented here constitute
lower limit values (Matsunaga and Ziemann, 2010; Hamil-
ton et al., 2011). Comprehensive wall loss characterisation
for the Manchester chamber is an ongoing exercise.

Several other simulation chamber studies investigatingβ-
caryophyllene photo-oxidation and ozonolysis under a range
of different conditions have been published over recent years,
giving a wide range of SOA yields, from 5 to 68 % (Griffin
et al., 1999; Jaoui et al., 2003; Lee et al., 2006b; Ng et al.,
2006; Winterhalter et al., 2009). The values obtained from
our work fall in the mid-lower region of this range, more in
line with work performed by Winterhalter and colleagues,
who reported (non-wall loss corrected) yields in the range
6–41 % for their ozonolysis experiments.

3.2 β-caryophyllene SOA composition

The filter extracts containingβ-caryophyllene SOA were
analysed using liquid chromatography coupled to ion-trap
mass spectrometry in both positive and negative ionisation
modes. Chromatographically separated compounds in all
samples were studied using MS/MS product ion spectra and
structures proposed based on previous literature, fragmenta-
tion patterns, known reaction mechanisms and comparison
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of spectral features to a large range of standard compounds
(multifunctional acids, carbonyls, alcohols, esters, acetates).
The proposed structures and retention times are shown in Ta-
ble 2. In some cases, only a few fragments are seen and these
species are labelled as tentative assignments in the table. The
molecules identified range in molar mass from 116 to 288 Da
and have a different distribution depending on photochemi-
cal age and the initial concentration of the precursor, as will
be discussed later in Sects. 3.3 and 3.4, respectively.

The largest ion abundances relate to compounds with mo-
lar masses of 252 and 254 Da. One large peak is seen in
the negative ionisation LC extracted ion chromatogram of
m/z 251 (see Supplement Fig. S2), which has been tenta-
tively identified asβ-caryophyllonic acid due to a loss of 18
(H2O) and 44 (CO2) in negative ionisation (see Supplement
Fig. S2) and 18 and 46 (HCO2H) in positive ionisation. How-
ever, recent results from Nørgaard et al. (2008), using colli-
sion induced dissociation of secondary ozonides (SOZ) from
monoterpenes ozonolysis, resulted in fragmentation via loss
of 18 or 44 Da. Therefore, without a standard, it is impossi-
ble to completely rule out a contribution from the SOZ, al-
though its vapour pressure is estimated to be three orders of
magnitude higher than that ofβ–caryophyllonic acid, con-
sistent with it being primarily in the gas phase (Jenkin et
al., 2012). There are 5 peaks (1 very large peak at 42 min,
1 medium peak at 52 min and three very small peaks) in
the negative ionisation LC extracted ion chromatogram of
m/z 253 (see Supplement Fig. S1). The largest peak is at
a retention time of 42min and them/z 253 ion gives major
fragment ions atm/z 235 and 191 [losses of 18 Da (H2O) and
62 Da (H2O+ CO2)] and two small fragment ions atm/z 207
and 209 [losses of 46 Da (CH3COH) and 44 Da (CO2)] (as
shown in the upper panel of Supplement Fig. S3). In addition
there is a minor fragment ion atm/z 151 Da, correspond-
ing to a loss of 102 Da. The loss of 102 may be a loss of
CHOCH2CH2COOH and thus this peak has been assigned
asβ-nocaryophyllonic acid. The medium peak at a retention
time of 52 min has large fragment ions atm/z 209 and 191,
giving losses of 44 (CO2) and 62 (H2O+ CO2), respectively
(as shown in the lower panel of Supplement Fig. S3). This
peak has been assigned toβ-caryophyllinic acid due to
the high intensitym/z 209 peak. There are no other obvi-
ous ionisation locations on theβ-caryophyllinic acid other
than the acid groups, which may explain why the loss of
44 Da is favoured for the diacid over theβ-nocaryophyllonic
acid, which can lose both 18 Da (from one of the car-
bonyl groups) and 44 Da (from the acid). Further work is
needed to confirm this fragmentation pattern and structural
assignment. In all cases the most abundant compounds are
β-caryophyllonic acid/SOZ (252 Da) andβ-caryophyllinic
acid/β-nocaryophyllonic acid (254 Da), which are all prod-
ucts ofβ-caryophyllene ozonolysis as reported in the litera-
ture (Jaoui et al., 2003; Winterhalter et al., 2009). It should
be noted thatβ-nocaryophyllonic acid is an isomer ofβ-
caryophyllinic acid. Recently, Chan et al. (2011) were unable

to distinguish these two compounds on the basis of accu-
rate mass measurements alone, and were therefore not spe-
cific about attribution in theirβ-caryophyllene/NOx photo-
oxidation study. The added benefits of compound separa-
tion by liquid chromatography and identification using tan-
dem MS in our employed techniques enabled us to con-
firm the presence of both compounds in SOA formed from
photo-oxidation ofβ-caryophyllene/NOx mixtures. From
a gas-phase mechanistic point of view, there seems lit-
tle doubt that theβ-nocaryophyllonic acid will be formed
as an important second-generation product as the system
ages, as it is the likely major product of both of O3 and
OH initiated oxidation ofβ-caryophyllonic acid (Jenkin
et al., 2012). In addition to this,β-nocaryophyllonic acid
can be formed from the likely very rapid ozonolysis ofβ-
nocaryophyllone (a significant product of the OH-initiated
oxidation ofβ-caryophyllene), providing a relatively prompt
source in the system. So it is predicted to be an impor-
tant second generation product, and with a vapour pres-
sure approaching an order of magnitude lower than that of
β-caryophyllonic acid, should be an important SOA con-
tributor (Jenkin et al., 2012). Jaoui et al. (2003) identi-
fied 3,3-dimethyl-2-(3-oxobutyl)-cyclobutane-methanal and
3,3-dimethyl-2-ethanal-cyclobutane, of molar mass 192 and
154 g mol−1, respectively in the condensed phase produced
in dark ozonolysis experiments. Neither of those aldehyde
compounds was detected in our photo-oxidation experi-
ments, where oxo-, hydroxyl- and poly- carboxylic acids
dominated the composition of the identified compounds.
This may be a result of poor ionisation efficiency of carbonyl
species using electrospray ionisation (Glasius et al., 2000).

O : C and H : C elemental ratios of the identified products
range from 0.20 to 1.00 and 1.00 to 2.00, with average val-
ues of 0.39 and 1.58, respectively. The range of these values
is a little wider than the corresponding range found by Li et
al. (2011) for dark ozonolysis experiments, where they re-
ported O : C and H : C elemental ratios of 0.13 to 0.50 and
1.43 to 1.60, respectively. Figure 2 shows a 2-D represen-
tation of the relationship between O:C ratio and saturation
concentration (Donahue et al., 2006) for all of the identified
molecules in Table 2 coloured by their molar mass. Mass
based C(i)* values were calculated from the vapour pres-
sure values using the method of Donahue et al. (2006) with
the assumption of liquid phase ideality (all activity coeffi-
cients= 1). To obtain the vapour pressure data the boiling
point was first estimated using the method of Nannoolal et
al. (2004), and then extrapolated to ambient temperatures us-
ing the vapour pressure equation of Nannoolal et al. (2008).
Parameters for atmospherically important functional groups
that are not covered by the original methods (e.g. hydroper-
oxide) were obtained from the literature (Compernolle et
al., 2010).β-Caryophyllene is also included in this figure
to indicate the origin of these molecules. The data shows
the expected trend of an increase of the O : C ratio associ-
ated with a decrease in the saturation concentration for the

www.atmos-chem-phys.net/12/6417/2012/ Atmos. Chem. Phys., 12, 6417–6436, 2012



6424 M. R. Alfarra et al.: Composition and hygroscopic properties ofβ-caryophyllene SOA

Table 2. Suggested structures, molar masses, retention times and elemental ratios ofβ-caryophyllene SOA compounds identified by LC-
MS/MS. The ratio of LC peak area for compounds identified in SOA collected at 6 h in a higher concentration experiment (16/04/08) and
lower concentration experiment (24/04/08) is also given.

Compound Structure Molar [M-H]− RT O : C H : C Ratio
Mass (min) “higher”/“lower”

3,4-dioxobutanoic acid

33 
 

Table 2: Suggested structures, molar masses, retention times and elemental ratios o β-caryophyllene SOA compounds identified by LC-MS2.  The ratio of 959 

LC peak area for compounds identified in SOA collected at 6 hours in a high concentration experiment (16/04/2008) and low concentration experiment 960 

(24/04/2008) is also given 961 
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3,3-dimethyl-2-(3-
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198 197 47 0.27 1.64 1.62 

184 183 43.8 0.3 1.60 4.27
dimethylcyclobutyl)-
but-3-enoic acid

2-(carboxymethyl)-3,3-

34 
 

3,3-dimethyl-2-(3-oxo-propyl)- 
cyclobutanecarboxylic acid 
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3-(2-hydroxy-3,3-
dimethylcyclobutyl)- 

but-3-enoic acid 

 

184 183 43.8 0.3 

 
 

1.60 
 
 

4.27 

2-(carboxymethyl)-3,3-
dimethylcyclobutanecarboxylic acida 

 

 

186 185 20.7 0.44 1.56 1.25 

3,3-dimethyl-2-(3-
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3,3-dimethyl-2-(3-

34 
 

3,3-dimethyl-2-(3-oxo-propyl)- 
cyclobutanecarboxylic acid 

 
 

184 183 51.6 0.3 1.60 1.91 

3-(2-hydroxy-3,3-
dimethylcyclobutyl)- 

but-3-enoic acid 

 

184 183 43.8 0.3 

 
 

1.60 
 
 

4.27 

2-(carboxymethyl)-3,3-
dimethylcyclobutanecarboxylic acida 

 

 

186 185 20.7 0.44 1.56 1.25 

3,3-dimethyl-2-(3-
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198 197 47 0.27 1.64 1.62 

198 197 47 0.27 1.64 1.62
oxobutyl)cyclobutanecarboxylic acid
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Table 2.Continued.

Compound Structure Molar [M-H]− RT O : C H : C Ratio
Mass (min) “higher”/“lower”

2-(2-carboxyethyl)-3,3-
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2-(2-carboxyethyl)-3,3-
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O

OH

O

HO
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HO

O
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Table 2.Continued.

Compound Structure Molar [M-H]− RT O:C H:C Ratio
Mass (min) “higher”/“lower”
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2-yl)-2,2-dimethylcyclobutyl)-3-

hydroxypropanoic acida 
 

OR 

 
3-[4-(2,4-Dihydroxy-butyryl)-2,2- 

dimethyl-cyclobutyl]-3-hydroxypropionic 
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Figure 2:  A 2-dimensional representation of the relationship between O:C ratio and 

saturation concentration  for all of the identified molecules in Table 2 coloured by their molar 

masses. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A 2-D representation of the relationship between O : C ratio
and saturation concentration for all of the identified molecules in
Table 2 coloured by their molar masses.

vast majority of the identified compounds in Table 2, con-
firming that photo-oxidation leads to functionalised products
with an increasing O : C ratio. The two compounds with mo-
lar masses of 116 and 118 Da and O : C ratios of 1 are likely
to be higher generation products from further oxidation and
ageing, as will be discussed in Sect. 3.3.

3.3 Ageing ofβ-caryophyllene SOA

The extracts obtained from the filters were directly injected
into the ion trap mass spectrometer without separation using
a syringe pump at 240 µlpm, to obtain a molar mass distribu-
tion. This allows a quick visual comparison to be made be-
tween SOA of different degrees of ageing. Figure 3 shows
the negative ionm/z distribution of the lower and higher
initial concentration samples at 2 h and 6 h. Prior to the ex-
periments presented here, 2α-pinene experiments were car-
ried out under identical conditions (30 ppbV VOC) but on
consecutive days to test variability. Filter samples were col-
lected at the same point in each experiment and the sam-
ples were analysed using LC-MS. Eightα-pinene SOA peaks
were chosen (including cis-pinonic acid and 3-methyl-1,2,3-
butanetricarboxylic acid – MBTCA) and the peak areas were
determined. The ratio of peak areas between the two sam-
ples was calculated and gave an average value of 1.17. This
indicates that any variability seen in the mass spectra for the
β-caryophyllene analysis is a result of aerosol ageing and not
a product of experiments being conducted on different days.

It is clear from Fig. 3 that photochemical ageing changes
the SOA composition. After two hours of ageing the SOA
composition is relatively simple and is dominated by peaks
from m/z 230–340. As the photochemical ageing proceeds,
the condensed phase mass spectra become increasingly com-
plex. This can be seen over the rangem/z 200–290, where
rather than comprising single peaks 14–16m/z apart, as was
seen att = 2 h, the mass spectra att = 6 h starts to fill up at
every odd mass. There is also a change in the molar mass
distribution with time, with an increase in smaller molecules

as the SOA ages. This can clearly be seen by subtracting the
mass spectra of the early SOA (2 h) from the aged SOA (6 h)
as shown in Fig. 4. In this figure, the mass spectra have been
scaled according to the amount of SOA on the filter. Peaks
that point downwards indicate ions that have higher relative
contribution to the mass after 2 h (i.e. less aged SOA) and
peaks that point upwards indicate ions that contribute more
to the mass after 6 h of ageing (i.e. more aged SOA). It is
clear that the highest molar mass compounds dominate af-
ter 2 h, whereas after 6 h of ageing there is a greater number
of lower molar mass species where both double bonds have
been oxidised.

The bulk composition of the SOA formed was also mea-
sured in real-time using a cTOF-AMS. These measurements
were not suitable for molecular identification owing to the
lack of ion separation and the nature of the electron im-
pact ionisation technique. However, they can provide highly
time resolved information on the chemical composition us-
ing overall mass spectral patterns and changes in key mass
fragments. For example, mass fragmentsm/z 43 and 44 can
broadly be used to indicate the presence of “less” and “more”
oxidised SOA respectively (Alfarra et al., 2006; Lanz et al.,
2007; Jimenez et al., 2009; Alfarra et al., 2004). During the
current experiments, it was observed thatm/z 43 dominated
the cTOF-AMS mass spectra along with a relatively low con-
tribution of m/z 44, contributing 13–16 % and< 5 % to the
total SOA signal, respectively. The fractional contributions of
the 43 and 44 fragments to the total mass spectra (f 43 and
f 44) at each time point for multiple lower and higher initial
concentration experiments are plotted in the bottom panel of
Fig. 5. In the higher initial concentration experiments, ageing
led to only a very small change in thef 43 andf 44, indicat-
ing very little change in the SOA composition as a function
of photochemical ageing. However, this effect is significantly
enhanced for experiments with lower initial precursor con-
centration, where the value off 44 increases from around 3
to 5 % over a period of 4 h. Ageing is also seen in a reduction
in the less oxidised fragment (f 43), which drops from 16 to
12 % over the same period. The combined effect of photo-
chemical ageing on the changes in both mass fragments is
shown in the top panel of Fig. 5, which shows a plot of the
ratio of f 44/f 43 as a function of time. This illustrates that
ageing has a significantly greater effect on the SOA compo-
sition and degree of oxidation when experiments are carried
out at lower concentrations.

A 2-D representation of the transformation of the chemical
composition ofβ-caryophyllene SOA in the context of pre-
viously published ambient data is presented in Fig. 6. The
dotted lines show the relationship betweenf 44 andf 43
for a large number of ambient datasets collected at loca-
tions in the Northern Hemisphere and discussed in detail by
Ng et al. (2010). The chamber generatedβ-caryophyllene
SOA data are located in the bottom right corner of the ambi-
ent triangle, indicating that the aerosol is mostly composed
of semi-volatile material. Similar to the discussion above,

www.atmos-chem-phys.net/12/6417/2012/ Atmos. Chem. Phys., 12, 6417–6436, 2012
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Figure 3: Negative ion m/z distributions β-caryohyllene SOA samples produced under higher and lower initial concentration conditions after 2 

and 6 hours of photo-oxidation. The suggested structures of the labelled peaks are listed in Table 2. 
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2 and 6 h of photo-oxidation. The suggested structures of the labelled peaks are listed in Table 2.
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Figure 4: The difference between a mass spectral distribution of an aged β-caryophyllene 

SOA sample (6 hours) and an early one (2 hour). The mass spectra have been scaled 

according to the amount of SOA collected in each case. Peaks that point downwards indicate 

ions that have higher relative contribution to the mass after 2 hours (i.e. less aged SOA) and 

peaks that point upwards indicate ions that contribute more to the mass after 6 hours of 

ageing (i.e. more aged SOA). The suggested structures of the labelled peaks are listed in 

Table 2. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The difference between a mass spectral distribution of an
agedβ-caryophyllene SOA sample (6 h) and an early one (2 h). The
mass spectra have been scaled according to the amount of SOA col-
lected in each case. Peaks that point downwards indicate ions that
have higher relative contribution to the mass after 2 h (i.e. less aged
SOA) and peaks that point upwards indicate ions that contribute
more to the mass after 6 h of ageing (i.e. more aged SOA). The sug-
gested structures of the labelled peaks are listed in Table 2.

ageing appears to transform the SOA formed in the lower
initial concentration experiments towards more oxygenated
material; in contrast, photochemical ageing has very little ef-
fect on the chemical characteristics of the SOA formed in the
higher concentration experiments.

The same effect is seen in the speciated composition ob-
tained from the filter extracts. The offline condensed phase
mass spectra of both higher and lower concentration exper-
iments at 2 and 6 h are shown in Fig. 3. Lower initial con-
centration experiments lead to a more complex and more

45 
 

Figure 5: Temporal trends of the fractional contribution of key mass fragments (m/z 43 and 

44) to the total SOA signal as measured by the  cToF-AMS during a number of experiments 

using higher and lower initial precursor concentrations (bottom panel). The top panel shows 

the ratio of f44/f43 as a function of time; illustrating that ageing has a significantly greater 

effect on the SOA degree of oxidation when experiments are carried out at lower precursor 

concentrations.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Temporal trends of the fractional contribution of key mass
fragments (m/z 43 and 44) to the total SOA signal as measured
by the cTOF-AMS during a number of experiments using higher
and lower initial precursor concentrations (bottom panel). The top
panel shows the ratio off 44/f 43 as a function of time; illustrat-
ing that ageing has a significantly greater effect on the SOA degree
of oxidation when experiments are carried out at lower precursor
concentrations.

oxidised SOA than that which was formed by the same
time in the higher initial concentration experiments. This re-
sult supports the hypothesis that experiments starting with
lower precursor concentrations require multiple generations
of oxidation to produce sufficient amounts of low vapour
pressure products. A more detailed discussion of the effect
of the initial VOC concentration on the speciated chemical
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Figure 6: The relationship between f44 and f43 for β-caryophyllene SOA in the context of 

previously published ambient datasets by Ng et al. (2010). The data points are coloured by 

time after the start of photo-oxidation. The insert in the top right corner shows a magnified 

view of the data points for clarity.  

 
 

  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.The relationship betweenf 44 andf 43 forβ-caryophyllene
SOA in the context of previously published ambient datasets by Ng
et al. (2010). The data points are coloured by time after the start of
photo-oxidation. The insert in the top right corner shows a magni-
fied view of the data points for clarity.

composition of the SOA formed is presented in the follow-
ing section.

3.4 Effect of initial precursor concentration on SOA
composition

The effect of the initial precursor concentration on SOA com-
position has been investigated by comparing the peak areas
of liquid chromatography (LC) separated SOA components
from one higher and one lower initial concentration exper-
iments. The high : low ratios of SOA collected on the filter
and peak SOA concentration in the chamber were 3.0 and
3.4, respectively. Thus compounds that have ratios of the or-
der of approximately 3.2±1.2 (i.e. in the range 2.0–4.4) have
roughly comparable contributions in the SOA generated from
lower and higher precursor concentration experiments; com-
pounds with a lower ratio are relatively more prominent in
the low concentration experiment and those with a higher ra-
tio are relatively more important in the higher concentration
experiment. Table 3 lists the structures of some of the identi-
fied compounds in each category.

A close inspection of the compound structures presented
in Table 3 shows that in the lower concentration experi-
ments, the compounds comprising the SOA were more ox-
idised than those that were found to be more abundant in
the higher initial concentration experiments. In general, those
found to be more prominent in the lower initial concen-
tration experiment had smaller carbon structures, with be-
tween only 4 and 13 carbon atoms and an average O : C ratio
of 0.51. Furthermore, these “lower” molar mass molecules
were found to primarily comprise low volatility dicarboxylic
acids, with a few species containing an alcohol, aldehyde
or ketone functional group as well as an acid moiety. The
species found in approximately equal quantities in both types

of SOA had larger C9–C14 carbon structures and an average
O : C ratio of 0.34. They contained multiple different types of
functional groups, although two of the species present also
comprised dicarboxylic acids. Those species found predom-
inantly in the higher initial concentration experiments had
the largest carbon structures, with between 12 and 15 car-
bon atoms per compound with an average O : C ratio of 0.27
and possessed an unsaturated carbon bond and 2–3 func-
tional groups, the most common, again, being an acid moiety.
In order to be consistent with absorptive partitioning, such
that lower condensed mass comprises lower volatility com-
ponents, it is clear that the reduced volatility by virtue of the
increased O : C ratio at lower concentrations more than off-
sets increased volatility by virtue of the corresponding reduc-
tion of molar mass.

3.5 Hygroscopic properties ofβ-caryophyllene SOA

The hygroscopic growth at 90 % RH was measured by the
HTDMA for particles generated during the experiments
listed in Tables 1a and b. Dry particle diameters were set
between 50 and 300 nm, with the larger diameters set later
in the experiments as the diameter of the mode of the num-
ber size distribution increased. At each selected diameter the
HTDMA resolved a narrow mono-modal growth factor prob-
ability density distribution (GFPDF), this shows that there
is little or no difference between the growth factors of indi-
vidual particles at a measured dry size. Hence the mean of
the GFPDF represents well (that is, with a small deviation
from the mean) the measured particle hygroscopic growth
reported in this study. Similarly the HTDMA was unable to
resolve any significant differences in the GFPDF as a func-
tion of selected dry diameter at any single time, this shows
that there is no significant difference in hygroscopicity be-
tween the different sized particles measured and is consistent
with the fact that the curvature of the particle surface will not
have a significant impact at the selected diameters. It should
be noted that it is only possible to select from a relatively
narrow range of particle sizes at any one-time; firstly, because
particles with diameters smaller than the modal diameter can-
not be selected without simultaneously sampling comparable
numbers of multi-charged larger particles of equal electrical
mobility and secondly due to the intrinsically narrow num-
ber size distribution produced in the chamber. Thus it is not
possible to disentangle any differences in water uptake as
a function of their size. The experiment-to-experiment vari-
ability was as large as the in-experiment temporal and size
dependent variability, but was within a small enough range
that it generally fell within the experimental uncertainty of
the other experiments. The growth factors measured during
the lower and higher concentration experiments were consis-
tently within experimental uncertainty of each other.

Figure 7 illustrates the mean hygroscopic growth factors
measured by the HTDMA at 90 % RH. It includes data from
7 separate experiments, 3 with lower initial concentration and
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Table 3.List of compounds identified in Table 2, which were found to be more abundant under “lower” initial precursor concentration (ratio
less than 2.0), “higher” initial precursor concentration (ratio greater than 4.4), and around equal under both initial conditions (ratio 2.0–4.4).
See text for further discussion. The ratios of LC peak areas are listed in Table 2.
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4 with higher initial concentration of theβ-caryophyllene
precursor. The mean growth factors ranged from 1.00 to 1.09,
with a 10th to 90th percentile range of 1.00 to 1.06; equiv-
alent toκ-values (Petters and Kreidenweis, 2008) between
0 and 0.03 for the particle diameters selected (between 50–
300 nm). There was no repeatable difference in the measured
growth factors between experiments using different initial
concentrations. The error bars in Fig. 7 are calculated based
on the instrument having an inherent uncertainty of± 0.02
in growth factor due to repeatability of the tandem DMA siz-
ing and a± 1.5 % uncertainty in the RH measurement in the
humidified DMA translated into a growth factor uncertainty
using theκ parameterisation (Petters and Kreidenweis, 2008;
Gysel et al., 2009). As the measured growth factors are low
the repeatability of the tandem DMA sizing is calculated to
be the dominant contributor to the error. A limited number of
CCN measurements were performed during the experiments
reported in Table 1a, where the derivedκ-values were also
found to be similarly low to those reported by the HTDMA
(κCCN-values between 0 and 0.02).

Hygroscopic growth factors of particles formed from the
photo-oxidation ofβ-caryophyllene (40 ppbV at 50 % RH in
the presence of NOx) have been measured previously by
Varutbangkul et al. (2006) and were 1.04 at 85 % RH (equiv-
alent to aκ-value of 0.024 for the 180 nm and 300 nm par-
ticles selected). The particles sampled by Varutbangkul et
al. (2006) exhibited lower growth factors as a function of
time, which was attributed to oligomerisation resulting in
higher molar mass less polar species in the particles sam-
pled. Varutbangkul et al. (2006) did not observe any selected
dry size dependence in the growth factor.

In our study the mean growth factor of a given dry size
tends to increase as the experiment progresses, though these
trends are generally within measurement uncertainty and
cannot be tracked throughout an experiment due to the in-
creasing modal diameter of the number size distributions.
This result contrasts with the aforementioned Varutbangul et
al. (2006) study that observed a clear temporal decrease in
the growth factor. Whilst oligomerisation is expected to de-
crease the growth factor with time, the increasingly oxidised
nature of the particle composition (as measured in this study
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Figure 7: The mean hygroscopic growth factors at 90 % RH as a function of photo-oxidation 

for β-caryophyllene SOA particles with selected dry diameters between 50 – 300 nm 

generated using lower and higher initial precursor concentrations. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.The mean hygroscopic growth factors at 90 % RH as a func-
tion of photo-oxidation forβ-caryophyllene SOA particles with se-
lected dry diameters between 50–300 nm generated using lower and
higher initial precursor concentrations.

by both online and offline methods) is expected to increase
the particle hygroscopicity. In our study oligomers were not
observed in the composition measurements (as found in the
off-line mass spectral analysis), which is one possible reason
a temporal decrease in the growth factor was not observed.
Given the observed temporal growth factor trend, it can be
concluded that the increasingly oxidised nature of the aerosol
only has a minor positive effect on it, or that it is offset by
other factors.

If a fraction of the aerosol formed were semi-volatile in
the range of the experimental conditions it could have a sig-
nificant impact on the measured growth factors. Asa-Awuku
et al. (2009) reported that the hygroscopic fraction of the
aerosol produced from the ozonolysis ofβ-caryophyllene is
semi-volatile. By sampling the aerosol through a thermo-
denuder at 35◦C and directly at 20◦C, Asa-Awuku et
al. (2009) measured a reduction in the particle hygroscop-
icity of the denuded sample based on the difference in
its size-resolved CCN activation. From these measurements
and additional analysis (detailed in the manuscript) the au-
thors concluded that the particles comprise a small fraction
of semi-volatile relatively hygroscopic material. This semi-
volatile fraction would therefore account for a large fraction
of the particle water content in a sub-saturated environment.
This finding has implications related to the aerosol sampling
and measurement techniques employed in such studies and
makes comparing results with other studies performed under
different conditions more difficult. Asa-Awuku et al. (2009)
show that a fairly small change in the aerosol temperature
(i.e. of the order of 10◦C) could change the particle hygro-
scopicity and if such changes occur within the instrumenta-
tion introduce artifacts. Drying the aerosol, a requirement for
mobility size selecting particles in the HTDMA and size re-
solved CCN measurements could also alter the particle com-
position and change its hygroscopic properties (Topping et
al., 2011). If the aerosol produced in the current study is
semi-volatile then it could affect the measured hygroscop-

icity. If for example, the relatively hygroscopic components
of the aerosol are in the gas phase when sampled through
the HTDMA then the growth factor will be low and there
may not be a response in the growth factor to an increase
in the fraction of more hygroscopic species later in the ex-
periment. Hence this is a possible explanation for the low
observed growth factor and small response to the ageing of
the aerosol.

In summary, the measured growth factors show there is
little water uptake at 90 % RH. Any size, temporal or pre-
cursor dependent change in the hygroscopicity is generally
within the measurement uncertainty and not repeatedly dif-
ferent. The increasingly oxidised nature of the aerosol ap-
pears to increase the growth factor only marginally, if at all.
The species that make up the particles appear to have a low
hygroscopicity.

3.6 Gas phase composition and linkages to the
condensed phase

The majority of peaks detected in the gas phase CIR-TOF-
MS spectra lay in the approximate range 70–255 Da (with
ions detected withm/z ratio as high as 271 Da). The rela-
tively high mass ionsm/z 253, 237, 235, 221, 209, 207, 203,
191 and 165 were typically the greatest contributors to the
gas phase mass spectra during each experiment. The majority
of the total ion signal comprising the condensed phase LC-
MS spectra fell in the somewhat higher approximate range
m/z 200–350 (with ions detected withm/z ratio as low as
115 Da). As such, a window of overlap of the order 50 Da ex-
isted between the mass spectra of the two phases. In this over-
lap window there were a number of concomitant mass peaks
that potentially represent compounds that were present in
both the gas and the condensed phases; these included com-
pounds of molar masses 200 (199/201), 238 (237/239), 252
(251/253), 254 (253/255), 268 (267/269) and 288 (287/289)
(each mass corrected for ionisation method and in the case of
the latter, potential parent ion dehydration in the CIR-TOF-
MS. See Table 2 for further information).

Perhaps the two most significant features of overlap be-
tween the two sets of mass spectra involve the ions of
m/z 251 and 253 from the condensed phase and the ions
of m/z 253 and 255 from the gas phase, potentially rep-
resenting compounds of molar masses 252 and 254. In the
condensed phase, the ions ofm/z 251 and 253 were ob-
served to have some of the largest peaks in the mass spec-
trum at each stage of the experiment and were identified
to be β-caryophyllonic acid andβ-caryophyllinic acid/β-
nocaryophyllonic acid, respectively. In the gas phase, the
spectral peak atm/z 253 was also amongst the largest
spectral features detected throughout the experiment; how-
ever, the ion ofm/z 255 was amongst the smallest sig-
nals observed (partly as a result of parent fragmenta-
tion following ionisation). Following the oxidation ofβ-
caryophyllene, three different C15 primary products with a

www.atmos-chem-phys.net/12/6417/2012/ Atmos. Chem. Phys., 12, 6417–6436, 2012



6432 M. R. Alfarra et al.: Composition and hygroscopic properties ofβ-caryophyllene SOA

48 
 

Figure 8: A comparison of the gas phase mass spectra obtained from two β-caryophyllene 

photo-oxidation experiments; one higher initial concentration (upwards pointing bars) and 

one lower initial concentration experiment (downwards pointing bars) after 99 % of the 

precursor had been consumed. Each peak represented as a fraction of the total organic ion 

count. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. A comparison of the gas phase mass spectra obtained from
two β-caryophyllene photo-oxidation experiments; one higher ini-
tial concentration (upwards pointing bars) and one lower initial con-
centration experiment (downwards pointing bars) after 99 % of the
precursor had been consumed. Each peak represented as a fraction
of the total organic ion count.

molar mass of 252 may be formed in the gas phase, in-
cludingβ-caryophyllonic acid and theβ-caryophyllene sec-
ondary ozonide, and four different C14 products (one pri-
mary and three secondary) may be formed with a molar mass
of 254, including the primary product,β-caryophyllinic acid
(although this is predicted to form with a very low yield in
the presence of NOx by currently proposed gas-phase for-
mation mechanisms) andβ-nocaryophyllonic acid (Jenkin
et al., 2012). The calculated vapour saturation concentra-
tions (C(i)*) for theβ-caryophyllonic,β-caryophyllinic and
β-nocaryophyllonic acids are 70.5, 0.55 and 8.5 µg m−3,
respectively. These values are consistent with the detec-
tion of β-caryophyllonic acid in both phases (gas and con-
densed) under the experimental aerosol mass loadings ob-
tained here, whereas the majority ofβ-caryophyllinic and
β-nocaryophyllonic acids were measured in the condensed
phase, as may be expected from their lower volatility. An-
other significant contributor to the gas phase mass spectrum
was the ion ofm/z 237 (molar mass 236), tentatively as-
signed to be the primary productβ-caryophyllon-aldehyde.

Such concomitancy between the two sets of measurements
suggests a role for the direct partitioning of such major
primary oxidation products from the gas to the condensed
phase, facilitating nucleation and subsequent aerosol growth.
However, the oxidation of certain primary species in the
gas phase offers the potential for gas-aerosol partitioning of
secondary products later during the experiment. A more in-
depth discussion regarding the identity of the gas phase ions
observed and the speciated linkages between the gas and
condensed phases of theβ-caryophyllene oxidation system
is presented in a separate publication, alongside a detailed
mechanistic investigation (Jenkin et al., 2012).

3.7 Ageing of theβ-caryophyllene gas phase system and
effect of initial precursor concentration

Figure 8 shows a comparison of the gas phase mass spectra
obtained from two typicalβ-caryophyllene photo-oxidation
experiments; one higher initial concentration (21 Novem-
ber 2007, upwards pointing bars) and one lower initial
concentration experiment (20 November 2007, downwards
pointing bars), over the spectral range 123≤ m/z ≤ 255 Da.
In order to demonstrate how the gaseous organic content of
the system aged under each set of conditions, the spectra pre-
sented show the composition of the gas phase matrix after
99 % of the precursor had been consumed.

From Fig. 8 it is clear that in terms of spectral composi-
tion, the two different gas phase systems aged in a somewhat
similar way, with the mass spectra of each being generally
composed of ions of the samem/z ratio and with each be-
ing dominated by ions pertaining to the primary oxidation
products ofβ-caryophyllene (e.g.m/z 253, 235). It should
be noted however, that although it is possible to state that the
spectral composition did not alter significantly between the
two scenarios, with the proton transfer reaction ionisation
technique it is not always possible to distinguish between
different structural isomers; such compounds often produce
similar spectral fingerprints (Wyche et al., 2005). Therefore,
it is not possible here to exclude the possibility that there was
a change in abundance of species of the isobaric compounds
that contribute to the same mass peak.

Although the general gas phase spectral composition of
the two systems was similar as the matrix aged, from
closer inspection of the data it becomes apparent that there
were a number of minor differences in the absolute frac-
tional make up of the spectra of each system. For instance,
the higher initial concentration gas phase mass spectrum
(Fig. 8, upwards pointing bars) was observed to contain a
greater contribution from the peaks ofm/z 253, 235, 217,
177 and 127, which have been tentatively identified to be-
long to at least two isobaric primary products, i.e. theβ-
caryophyllene secondary ozonide andβ-caryophyllonic acid
(molar mass= 252) (Jenkin et al., 2012). At this stage of
the higher concentration experiment these spectral features
possessed a combined fractional abundance that was∼ 1.5
times greater than the equivalent peaks in the lower concen-
tration spectra. Further to this, them/z 207 peak, tentatively
identified as primary oxidation productβ-nocaryophyllone,
was also found to be in greater fractional abundance under
higher concentration conditions. These findings are in line
with results presented earlier from the aerosol composition
analysis, which showed that the higher concentration system
produced a “fresher” aerosol containing a relatively greater
contribution from certain less oxidised species, includingβ-
caryophyllonic acid.

Conversely, the corresponding lower concentration gas
phase mass spectrum (Fig. 8, downwards pointing bars)
contained a slightly greater contribution from ions that are
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believed to result from a mixture of both primary and sec-
ondary generation compounds, includingm/z 209, 203, 193,
191, 165 and 147, by factors in the range 1.5–1.9. None
of these spectral features were found to be directly corre-
lated with molecular ion peaks observed to be significantly
more abundant in the mass spectra of the lower concentra-
tion aerosol (Table 3).

Consequently, with respect to the fractional contribution of
ions to the mass spectra, the higher concentration gas phase
matrix appeared slightly less aged than its lower concentra-
tion counterpart. Indeed, the gas phase composition would
be expected to age more slowly under higher concentration
conditions, as a greater proportion of first generation prod-
ucts would exist in the condensed phase and hence be pro-
tected from gas phase oxidation. The onward oxidation of the
(relatively smaller) gas phase component would tend to draw
material back out of the condensed phase so that net loss of
relevant first generation products in the gas phase would be
buffered. It follows therefore that the direct partitioning of
a larger pool of such less aged material may have resulted
in the observed fresher aerosol composition. With no signifi-
cant evidence (within measureable limits) to directly link the
compounds found in greater abundance in the lower concen-
tration aerosol (left hand panel of Table 3) with ions in the
lower concentration gas phase mass spectra, it is possible that
condensed phase chemistry (i.e. aerosol ageing) may have
had some role in their production. It should be noted how-
ever, that following mass branching through the system and
considering potential re-volatilisation rates, such compounds
may have been present in the gas phase below the detection
limits of the instrumentation.

4 Conclusions

In this study, we characterised the chemical composition and
hygroscopic properties of secondary organic aerosol (SOA)
formed in the Manchester aerosol chamber during the photo-
oxidation ofβ-caryophyllene/NOx mixtures in the absence
of pre-existing seed particles. The high reactivity of the
sesquiterpene and the low volatility of its oxidation prod-
ucts led to a rapid nucleation and resulted in the formation
of fresh SOA with a relatively simple chemical composition.
β-caryophyllene SOA yield values ranged from 9.5–26.7 %
and 30.4–44.5 % using a DMPS and an AMS mass based
measurements, respectively. The discrepancies between the
DMPS and AMS mass measurements were possibly a re-
sult of the difference in pre-treatment of the semivolatile-
containing particles prior to the instrumentation.

A total of 20 compounds were identified in the SOA by
LC-MS/MS, with the most abundant compounds identified as
β-caryophyllonic acid (252 Da) andβ-caryophyllinic acid/β-
nocaryophyllonic acid (254 Da). Unlike previous studies,
we have been able to confirm the presence of the latter
pair of isomers in SOA formed from photo-oxidation of

β-caryophyllene/NOx mixtures.β-caryophyllonic acid was
detected in both of the gas and condensed phases; a find-
ing consistent with its calculated vapour saturation con-
centration (C(i)*) of 70.5 µg m−3 under the experimental
aerosol mass loadings obtained in the reported experiments.
On the other hand, the majority ofβ-caryophyllinic and
β-nocaryophyllonic acids were measured in the condensed
phase, as predicted from their lower calculated vapour sat-
uration concentrations of 0.55 and 8.5 µg m−3, respectively.
The O : C and H : C elemental ratios of products identified
in the condensed phase ranged from 0.20 to 1.00 and 1.00
to 2.00, with average values of 0.39 and 1.58, respectively.
Our results showed that the increase in the O : C ratio was as-
sociated with a decrease in the saturation concentration C(i)*
of the identified compounds, confirming that photo-oxidation
leads to functionalised products with an increasing O : C ra-
tio.

The initial β-caryophyllene mixing ratios were varied be-
tween relatively low and relatively high levels to investigate
the effect of initial precursor concentration on composition.
We found that in the lower concentration experiments, the
compounds comprising the SOA were more oxidised than
those that were found to be more abundant in the higher ini-
tial concentration experiments. The former compounds had
smaller carbon structures, with between only 4 and 13 car-
bon atoms and an average O : C ratio of 0.51. On the other
hand, the latter compounds had the largest carbon structures,
with between 12 and 15 carbon atoms per compound with
an average O : C ratio of 0.27. These O : C ratios were in line
with findings in the gas phase, which showed that the higher
concentration gas phase matrix appeared slightly less aged
than its lower concentration counterpart. The effect of photo-
chemical ageing on the speciated composition of the formed
SOA was enabled by rapidly sampling the entire contents of
the Manchester Aerosol Chamber onto filters 2 and 6 h after
the start of repeat experiments. Ageing led to a more complex
SOA composition with a larger contribution coming from
lower molar mass, higher generation products, where both
double bonds had been oxidised. This effect was more evi-
dent in the experiments conducted using the lower initial pre-
cursor concentration; a finding confirmed by the temporal be-
haviour of key organic mass fragment (m/z 43 andm/z 44)
measured by the AMS.

The hygroscopic growth of dryβ-caryophyllene SOA par-
ticles with diameters between 50 and 300 nm was measured
by an HTDMA at 90 % RH. The mean growth factors ranged
from 1.00 to 1.09, with a 10th to 90th percentile range of
1.00 to 1.06 (equivalent toκ-value between 0 and 0.03). A
limited number of CCN measurements resulted in a similarly
low derivedκ-values between 0 and 0.02. The HTDMA was
unable to resolve any significant differences in the growth
factors as a function of selected dry diameter at any single
time, nor during the lower and higher concentration exper-
iments. The increasingly oxidised nature of the aerosol ap-
peared to increase the growth factor only marginally, if at all.
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These findings might have been influenced by the difference
in pre-treatment of the semivolatile-containing particles prior
to their measurements. More quantitative research is required
to improve our understanding of influence of semi-volatile
material on the properties of atmospheric aerosols.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
6417/2012/acp-12-6417-2012-supplement.pdf.
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