130 research outputs found

    A newly discovered VHE gamma-ray PWN candidate around PSR J1459-60

    No full text
    Observations of the Galactic Plane performed by the H.E.S.S. telescope array have revealed a significant excess at very-high-energies (VHE; E>0.1 TeV) from the direction of PSR J1459-60, a rather old gamma-ray pulsar (64 kyr) with a spindown energy of ~10^36 erg/s, discovered by the Fermi/LAT satellite in high-energy (HE) gamma-rays. The X-ray pulsar counterpart has been recently detected using the Suzaku satellite. In this contribution, we present the discovery of a new VHE gamma-ray source, including morphological and spectral analyses. Its association with the gamma-ray pulsar in a PWN scenario will be discussed

    Discovery of very high energy γ-ray emission from the BL Lacertae object PKS 0301-243 with H.E.S.S.

    Get PDF
    The active galactic nucleus PKS 0301−243 (z = 0.266) is a high-synchrotron-peaked BL Lac object that is detected at high energies (HE, 100 MeV 100 GeV) by the High Energy Stereoscopic System (H.E.S.S.) from observations between September 2009 and December 2011 for a total live time of 34.9 h. Gamma rays above 200 GeV are detected at a significance of 9.4σ. A hint of variability at the 2.5σ level is found. An integral flux I(E > 200 GeV) = (3.3 ± 1.1stat ± 0.7syst) × 10-12 ph cm-2 s-1 and a photon index Γ = 4.6 ± 0.7stat ± 0.2syst are measured. Multi-wavelength light curves in HE, X-ray and optical bands show strong variability, and a minimal variability timescale of eight days is estimated from the optical light curve. A single-zone leptonic synchrotron self-Compton scenario satisfactorily reproduces the multi-wavelength data. In this model, the emitting region is out of equipartition and the jet is particle dominated. Because of its high redshift compared to other sources observed at TeV energies, the very high energy emission from PKS 0301−243 is attenuated by the extragalactic background light (EBL) and the measured spectrum is used to derive an upper limit on the opacity of the EBL.Fil: Abramowski, A.. Universitat Hamburg; AlemaniaFil: Acero, F.. Universite Montpellier II; FranciaFil: Aharonian, F.. Max Planck Institut für Kernphysik; AlemaniaFil: Benkhali, F. Ait. Max Planck Institut für Kernphysik; AlemaniaFil: Akhperjanian, A. G.. National Academy of Sciences of the Republic of Armenia; ArmeniaFil: Medina, Maria Clementina. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomia; ArgentinaFil: Valerius, K.. Universität Erlangen Nürnberg; AlemaniaFil: van Eldik, C.. Universität Erlangen Nürnberg; AlemaniaFil: Vasileiadis, G.. Universite Montpellier II; FranciaFil: Venter, C.. North West University; SudáfricaFil: Viana, A.. Max Planck Institut für Kernphysik; AlemaniaFil: Vincent, P.. Université Paris Diderot - Paris 7; FranciaFil: Völk, H. J.. Max Planck Institut für Kernphysik; AlemaniaFil: Volpe, F.. Max Planck Institut für Kernphysik; AlemaniaFil: Vorster, M.. North West University; SudáfricaFil: Wagner, S. J.. Universität Heidelberg; AlemaniaFil: Wagner, P.. Humboldt Universität zu Berlin; AlemaniaFil: Ward, M.. University Of Durham; Reino UnidoFil: Weidinger, M.. Ruhr-universität Bochum; AlemaniaFil: Weitzel, Q.. Max Planck Institut für Kernphysik; AlemaniaFil: White, R.. The University of Leicester; Reino UnidoFil: Wierzcholska, A.. Uniwersytet Jagiellonski; PoloniaFil: Willmann, P.. Universität Erlangen Nürnberg; AlemaniaFil: Wörnlein, A.. Universität Erlangen Nürnberg; AlemaniaFil: Wouters, D.. CEA Saclay; FranciaFil: Zacharias, M.. Ruhr-universität Bochum; AlemaniaFil: Zajczyk, A.. Universite Montpellier II; FranciaFil: Zdziarski, A. A.. Nicolaus Copernicus Astronomical Center; PoloniaFil: Zech, A.. Université Paris Diderot - Paris 7; FranciaFil: Zechlin, H. S.. Universitat Hamburg; Alemani

    Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths

    Get PDF
    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release

    Proteomic identification and characterization of hepatic glyoxalase 1 dysregulation in non-alcoholic fatty liver disease

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. However, its molecular pathogenesis is incompletely characterized and clinical biomarkers remain scarce. The aims of these experiments were to identify and characterize liver protein alterations in an animal model of early, diet-related, liver injury and to assess novel candidate biomarkers in NAFLD patients. Methods: Liver membrane and cytosolic protein fractions from high fat fed apolipoprotein E knockout (ApoE−/−) animals were analyzed by quantitative proteomics, utilizing isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). Differential protein expression was confirmed independently by immunoblotting and immunohistochemistry in both murine tissue and biopsies from paediatric NAFLD patients. Candidate biomarkers were analyzed by enzyme-linked immunosorbent assay in serum from adult NAFLD patients. Results: Through proteomic profiling, we identified decreased expression of hepatic glyoxalase 1 (GLO1) in a murine model. GLO1 protein expression was also found altered in tissue biopsies from paediatric NAFLD patients. In vitro experiments demonstrated that, in response to lipid loading in hepatocytes, GLO1 is first hyperacetylated then ubiquitinated and degraded, leading to an increase in reactive methylglyoxal. In a cohort of 59 biopsy-confirmed adult NAFLD patients, increased serum levels of the primary methylglyoxal-derived advanced glycation endproduct, hydroimidazolone (MG-H1) were significantly correlated with body mass index (r = 0.520, p < 0.0001). Conclusion: Collectively these results demonstrate the dysregulation of GLO1 in NAFLD and implicate the acetylation-ubquitination degradation pathway as the functional mechanism. Further investigation of the role of GLO1 in the molecular pathogenesis of NAFLD is warranted. Keywords: Non-alcoholic fatty liver disease, Glyoxalase, Methylglyoxal, Proteomics, iTRA

    Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum

    Get PDF
    Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac object PKS 2155-304 (z=0.116) are used to derive upper limits at the 95% C.L. on the strength of the ALP coupling to photons, ggammaa<2.1×10-11GeV-1 for an ALP mass between 15 and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic fieldFil: Medina, Maria Clementina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); ArgentinaFil: H.E.S. S. collaboration

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA

    The 2010 very high energy gamma-ray flare & 10 years of multi-wavelength observations of M 87

    Get PDF
    Abridged: The giant radio galaxy M 87 with its proximity, famous jet, and very massive black hole provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (~day), peak fluxes (Phi(>0.35 TeV) ~= (1-3) x 10^-11 ph cm^-2 s^-1), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken ~3 days after the peak of the VHE gamma-ray emission reveal an enhanced flux from the core. The long-term (2001-2010) multi-wavelength light curve of M 87, spanning from radio to VHE and including data from HST, LT, VLA and EVN, is used to further investigate the origin of the VHE gamma-ray emission. No unique, common MWL signature of the three VHE flares has been identified.Comment: 19 pages, 5 figures; Corresponding authors: M. Raue, L. Stawarz, D. Mazin, P. Colin, C. M. Hui, M. Beilicke; Fig. 1 lightcurve data available online: http://www.desy.de/~mraue/m87
    corecore