4,755 research outputs found
Caribbean Plate margin evolution : constraints and current problems
Oceanic crust was generated at multiple spreading centres during the Jurassic and Early Cretaceous, forming a "proto-Caribbean" oceanic domain. During the Cretaceous, part of that crustal domain thickened into an oceanic plateau, of petrologic Mid-Ocean Ridge (MOR) to Ocean Island Basalt (OIB) affinity. Simultaneously, the South and North American continental plates developed rifting and tholeiitic magmatism in the Middle America region (Venezuela and Cuba). The rifting created space for the proto-Caribbean oceanic domain. Petrological and regional correlations suggest that, beginning in the Cretaceous, the proto-Caribbean domain was involved into two main stages of subduction, referred to as first and second "eo-Caribbean" phases. Each phase is characterized by oblique convergence. The older (mid-Cretaceous) stage, involved in subduction (probably eastward dipping) of thin proto-Caribbean lithosphere, with generation of Island Arc Tholeiitic (IAT) and Calc-Alkaline (CA) magmatism, accompanied by high pressure - low temperature (HP - LT) metamorphic effects, and formation of arc units and ophiolitic melanges (Guatemala, Cuba, Hispaniola and Puerto Rico, in the northern margin; Venezuela in the southern). The Late Cretaceous second stage consisted of westward dipping intra-oceanic subduction; it is recorded by tonalitic arc magmatism related to the onset of the Aves - Lesser Antilles arc system. Since the Late Cretaceous, the inner undeformed portions of the Caribbean oceanic plateau (i.e. the Colombian and Venezuelan Basins) were trapped east of the Pacific subduction of the Chortis, Chorotega and Choco blocks, ultimately building the Central American Isthmus. From Tertiary to Present, continuous eastward movement of the Caribbean Plate with respect to the Americas, gave rise to transpression along both the northern and southern margins, marked by scattered and dismembered ophiolitic terranes
One year of CNR-IMAA multi-wavelength Raman lidar measurements in coincidence with CALIPSO overpasses: Level 1 products comparison
At CNR-IMAA, an aerosol lidar system has operated since May 2000 in the framework of EARLINET (European Aerosol Research Lidar Network), the first lidar network for tropospheric aerosol study on a continental scale. High quality multi-wavelength measurements make this system a reference point for the validation of data products provided by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), the first satellite-borne lidar specifically designed for aerosol and cloud study. Since 14 June 2006, dedicated measurements have been performed at CNR-IMAA in coincidence with CALIPSO overpasses. For the first time, results on 1-year comparisons between ground-based multi-wavelength Raman lidar measurements and corresponding CALIPSO lidar Level 1 profiles are presented. A methodology for the comparison is presented and discussed in detail. Night-time cases are considered to take advantage from Raman capability of the ground based lidar. Cases with the detection of cirrus clouds in CALIPSO data are separately analysed for taking into account multiple scattering effects. For cirrus cloud cases, few cases are available to draw any conclusions. For clear sky conditions, the comparison shows good performances of the CALIPSO on-board lidar: the mean relative difference between the ground-based and CALIPSO Level 1 measurements is always within its standard deviation at all altitudes, with a mean difference in the 3–8 km altitude range of (−2±12)%. At altitude ranges corresponding to the typical PBL height observed at CNR-IMAA, a mean difference of (−24±20)% is observed in CALIPSO data, probably due to the difference in the aerosol content at the location of PEARL and CALIPSO ground-track location. Finally, the mean differences are on average lower at all altitude ranges for the closest overpasses (at about 40 km) respect to the 80-km overpasses
Freestyle-Like V-Y Flaps of the Eyebrow: A New Outlook and Indication of an Historical Technique
The eyebrow region is of utmost importance for facial movement, symmetry, and the overall cosmetic appearance of the face. Trauma or tumor resection often leave scars that may dislocate the eyebrow producing an alteration both in static symmetry of the face and in the dynamic expressivity. The authors present a technique for eyebrow's defects repair using the remaining eyebrow advancement by means of a "freestyle-like" V-Y flap. In the past two years a total of eight consecutive patients underwent excision of skin lesions in the superciliary region and immediate reconstruction with this technique. On histology, six patients were affected from basal cell carcinomas, one from squamous cell carcinoma, and one from congenital intradermal melanocytic nevus. The pedicle of the flap included perforators from the supratrochlear, supraorbital, or superficial temporalis artery. Advancement of the entire aesthetic subunit that includes the eyebrow using a V-Y perforator flap was performed successfully in all cases achieving full, tension-free closure of defects up to 3.0\u2009cm. "Freestyle-like" V-Y flaps should be considered as a first-line choice for partial defects of the eyebrow. The greater mobility compared to random subcutaneous flaps allows to reconstruct large defects providing an excellent cosmetic result
Static and vibration analysis of functionally graded beams using refined shear deformation theory
Static and vibration analysis of functionally graded beams using refined shear deformation theory is presented. The developed theory, which does not require shear correction factor, accounts for shear deformation effect and coupling coming from the material anisotropy. Governing equations of motion are derived from the Hamilton's principle. The resulting coupling is referred to as triply coupled axial-flexural response. A two-noded Hermite-cubic element with five degree-of-freedom per node is developed to solve the problem. Numerical results are obtained for functionally graded beams with simply-supported, cantilever-free and clamped-clamped boundary conditions to investigate effects of the power-law exponent and modulus ratio on the displacements, natural frequencies and corresponding mode shapes
Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET
© Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.The eruption of the Icelandic volcano Eyjafjallaj ökull in April-May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.Peer reviewe
CIAO: the CNR-IMAA advanced observatory for atmospheric research
Long-term observations of aerosol and clouds are of crucial importance to understand the weather climate system. At the Istituto di Metodologie per l'Analisi Ambientale of the Italian National Research Council (CNR-IMAA) an advanced atmospheric observatory, named CIAO, is operative. CIAO (CNR-IMAA Atmospheric Observatory) main scientific objective is the long term measurement for the climatology of aerosol and cloud properties. Its equipment addresses the state-of-the-art for the ground-based remote sensing of aerosol, water vapour and clouds including active and passive sensors, like lidars, ceilometers, radiometers, and a radar. This paper describes the CIAO infrastructure, its scientific activities as well as the observation strategy. The observation strategy is mainly organized in order to provide quality assured measurements for satellite validation and model evaluation and to fully exploit the synergy and integration of the active and passive sensors for the improvement of atmospheric profiling. Data quality is ensured both by the application of protocols and dedicated quality assurance programs mainly related to the projects and networks in which the infrastructure is involved. The paper also introduces examples of observations performed at CIAO and of the synergies and integration algorithms (using Raman lidar and microwave profiler data) developed and implemented at the observatory for the optimization and improvement of water vapour profiling. CIAO database represents an optimal basis to study the synergy between different sensors and to investigate aerosol-clouds interactions, and can give a significant contribution to the validation programs of the incoming new generation satellite missions
ADVANCED ENDOSCOPIC IMAGING FOR SURVEILLANCE FOR DYSPLASIA AND COLORECTAL CANCER IN INFLAMMATORY BOWEL DISEASE: COULD THE PATHOLOGIST BE FURTHER HELPED?
Patients with inflammatory bowel disease (IBD) have an increased risk of developing intestinal cancer. The magnitude of that increased risk as well as how best to mitigate it remain a topic of ongoing investigation in the field. It is important to quantify the risk of colorectal cancer in association with IBD. The reported risk varies widely between studies. This is partly due to the different methodologies used in the studies. Because of the limitations of surveillance strategies based on the detection of dysplasia, advanced endoscopic imaging and techniques involving the detection of alterations in mucosal antigens and genetic abnormalities are being investigated. Development of new biomarkers, predicting future occurrence of colonic neoplasia may lead to more biomarker-based surveillance. There are promising results that may lead to more efficient surveillance in IBD patients and more general acceptance of its use. A multidisciplinary approach, involving in particular endoscopists and pathologists, together with a centralized patient management, could help to optimize treatments and follow-up measures, both of which could help to reduce the IBD-associated cancer risk
The supergiant fast X-ray transient IGR J18483−0311 in quiescence: XMM-Newton, Swift and Chandra observations
IGR J18483−0311 was discovered with INTEGRAL in 2003 and later classified as a supergiant fast X-ray transient. It was observed in outburst many times, but its quiescent state is still poorly known. Here, we present the results of XMM-Newton, Swift and Chandra observations of IGR J18483−0311. These data improved the X-ray position of the source, and provided new information on the timing and spectral properties of IGR J18483−0311 in quiescence. We report the detection of pulsations in the quiescent X-ray emission of this source, and give for the first time a measurement of the spin-period derivative of this source. In IGR J18483−0311, the measured spin-period derivative of −(1.3 ± 0.3) × 10−9 s s−1 likely results from light travel time effects in the binary. We compare the most recent observational results of IGR J18483−0311 and SAX J1818.6−1703, the two supergiant fast X-ray transients for which a similar orbital period has been measure
The 2015-2016 outburst of the classical EXor V1118 Ori
After a quiescence period of about 10 years, the classical EXor source V1118
Ori has undergone an accretion outburst in 2015 September. The maximum
brightness (DV > 4 mag) was reached in 2015 December and was maintained for
several months. Since 2016 September, the source is in a declining phase.
Photometry and low/ high-resolution spectroscopy were obtained with MODS and
LUCI2 at the {\it Large Binocular Telescope}, with the facilities at the Asiago
1.22 and 1.82 m telescopes, and with GIANO at the {\it Telescopio Nazionale
Galileo}. The spectra are dominated by emission lines of \hi\ and neutral
metallic species. From line and continuum analysis we derive the mass accretion
rate and its evolution during the outburst. Considering that extinction may
vary between 1.5 and 2.9 mag, we obtain m_acc= 0.32.0 10 m_sun/yr, in
quiescence and m_acc= 0.21.9 10 m_sun/yr, at the outburst peak. The
Balmer decrement shape has been interpreted by means of line excitation models,
finding that from quiescence to outburst peak, the electron density has
increased from 2 10 cm to 4 10 cm. The
profiles of the metallic lines are symmetric and narrower than 100 km s,
while \hi\, and \hei\,\,lines show prominent wings extending up to 500 km
s. The metallic lines likely originate at the base of the accretion
columns, where neutrals are efficiently shielded against the ionizing photons,
while faster ionized gas is closer to the star. Outflowing activity is
testified by the detection of a variable P Cyg-like profile of the H
and \hei\, 1.08\,m lines.Comment: Accepted by Ap
- …
