113 research outputs found

    Dominant role of the ERAP1 polymorphism R528K in shaping the HLA-B27 peptidome through differential processing determined by multiple peptide residues

    Get PDF
    Copyright © 2015 by the American College of Rheumatology. Objective To characterize the alterations, as well as their mechanisms, induced in the HLA-B27-bound peptidome expressed in live cells by the natural ERAP1 polymorphisms predisposing to ankylosing spondylitis (AS): R528K and N575D/Q725R. Methods HLA-B27:05-bound peptides were isolated from 3 human lymphoid cell lines expressing distinct ERAP1 variants differing at residues 528 and/or 575/725. The high-performance liquid chromatography-fractionated peptide pools were compared by mass spectrometry based on identity of molecular mass and chromatographic retention time. The relative amount of each shared peptide in any given cell line pair was estimated from the respective ion peak intensities. Peptide sequencing was also carried out by mass spectrometry. Results HLA-B27-bound ligands predominant in the context of the ERAP1 variant with K528 collectively showed higher molecular mass, higher frequency of N-terminal residues resistant to ERAP1, and bulkier residues downstream of the N-terminus, relative to peptides predominant in the R528 context. None of these differences were observed with ERAP1 variants differing at positions 575/725, but not at residue 528. Neither R528K nor N575D/Q725R altered the mean length of B27:05-bound ligands. Conclusion The R528K, but not the N575D/Q725R, polymorphism alters the expression levels of many HLA-B27:05-bound peptides, depending on the susceptibility of their N-terminal residues to trimming and depending on the size of the amino acid side chains at multiple positions downstream of the N-terminus. The significant alterations in the B27:05 peptidome and the structural features of the peptides that determine their differential expression in distinct ERAP1 contexts account for the association of the R528K polymorphism with AS.Peer Reviewe

    A Functional Variant in ERAP1 Predisposes to Multiple Sclerosis

    Get PDF
    The ERAP1 gene encodes an aminopeptidase involved in antigen processing. A functional polymorphism in the gene (rs30187, Arg528Lys) associates with susceptibility to ankylosying spondylitis (AS), whereas a SNP in the interacting ERAP2 gene increases susceptibility to another inflammatory autoimmune disorder, Crohn's disease (CD). We analysed rs30187 in 572 Italian patients with CD and in 517 subjects suffering from multiple sclerosis (MS); for each cohort, an independent sex- and age-matched control group was genotyped. The frequency of the 528Arg allele was significantly higher in both disease cohorts compared to the respective control population (for CD, OR = 1.20 95%CI: 1.01–1.43, p = 0.036; for RRMS, OR = 1.26; 95%CI: 1.04–1.51, p = 0.01). Meta-analysis with the Wellcome Trust Cases Control Consortium GWAS data confirmed the association with MS (pmeta = 0.005), but not with CD. In AS, the rs30187 variant has a predisposing effect only in an HLA-B27 allelic background. It remains to be evaluated whether interaction between ERAP1 and distinct HLA class I alleles also affects the predisposition to MS, and explains the failure to provide definitive evidence for a role of rs30187 in CD. Results herein support the emerging concept that a subset of master-regulatory genes underlay the pathogenesis of autoimmunity

    TAPBPR: a new player in the MHC class I presentation pathway.

    Get PDF
    In order to provide specificity for T cell responses against pathogens and tumours, major histocompatibility complex (MHC) class I molecules present high-affinity peptides at the cell surface to T cells. A key player for peptide loading is the MHC class I-dedicated chaperone tapasin. Recently we discovered a second MHC class I-dedicated chaperone, the tapasin-related protein TAPBPR. Here, we review the major steps in the MHC class I pathway and the TAPBPR data. We discuss the potential function of TAPBPR in the MHC class I pathway and the involvement of this previously uncharacterised protein in human health and disease.C.H was supported by a Wellcome Trust PhD Studentship (Grant 089563) and L.H.B was funded by a Wellcome Trust Career Development Fellowship (Grant 085038).This is the author accepted manuscript. The final published version is available via Wiley at http://onlinelibrary.wiley.com/doi/10.1111/tan.12538/abstract;jsessionid=3D6AF64F5BD8C64E84634A4303842BE2.f04t01

    The Internal Sequence of the Peptide-Substrate Determines Its N-Terminus Trimming by ERAP1

    Get PDF
    Background: Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims N-terminally extended antigenic peptide precursors down to mature antigenic peptides for presentation by major histocompatibility complex (MHC) class I molecules. ERAP1 has unique properties for an aminopeptidase being able to trim peptides in vitro based on their length and the nature of their C-termini. Methodology/Principal Findings: In an effort to better understand the molecular mechanism that ERAP1 uses to trim peptides, we systematically analyzed the enzyme's substrate preferences using collections of peptide substrates. We discovered strong internal sequence preferences of peptide N-terminus trimming by ERAP1. Preferences were only found for positively charged or hydrophobic residues resulting to trimming rate changes by up to 100 fold for single residue substitutions and more than 40,000 fold for multiple residue substitutions for peptides with identical N-termini. Molecular modelling of ERAP1 revealed a large internal cavity that carries a strong negative electrostatic potential and is large enough to accommodate peptides adjacent to the enzyme's active site. This model can readily account for the strong preference for positively charged side chains. Conclusions/Significance: To our knowledge no other aminopeptidase has been described to have such strong preferences for internal residues so distal to the N-terminus. Overall, our findings indicate that the internal sequence of the peptide can affect its trimming by ERAP1 as much as the peptide's length and C-terminus. We therefore propose that ERAP1 recognizes the full length of its peptide-substrate and not just the N- and C- termini. It is possible that ERAP1 trimming preferences influence the rate of generation and the composition of antigenic peptides in vivo

    Epistatic interaction of ERAP1 and HLA-B in Behçet disease: a replication study in the Spanish population

    Get PDF
    Behçet's disease (BD) is a multifactorial disorder associated with the HLA region. Recently, the ERAP1 gene has been proposed as a susceptibility locus with a recessive model and with epistatic interaction with HLA-B51. ERAP1 trims peptides in the endoplasmic reticulum to optimize their length for MHC-I binding. Polymorphisms in this gene have been related with the susceptibility to other immune-mediated diseases associated to HLA class I. Our aim was, the replication in the Spanish population of the association described in the Turkish population between ERAP1 (rs17482078) and BD. Additionally, in order to improve the understanding of this association we analyzed four additional SNPs (rs27044, rs10050860, rs30187 and rs2287987) associated with other diseases related to HLA class I and the haplotype blocks in this gene region. According to our results, frequencies of the homozygous genotypes for the minor alleles of all the SNPs were increased among patients and the OR values were higher in the subgroup of patients with the HLA-B risk factors, although differences were not statistically significant. Moreover, the presence of the same mutation in both chromosomes increased the OR values from 4.51 to 10.72 in individuals carrying the HLA-B risk factors. Therefore, although they were not statistically significant, our data were consistent with an association between ERAP1 and BD as well as with an epistatic interaction between ERAP1 and HLA-B in the Spanish population

    Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger

    Get PDF
    Endoplasmic reticulum associated degradation (ERAD) is a conserved mechanism to remove misfolded proteins from the ER by targeting them to the proteasome for degradation. To assess the role of ERAD in filamentous fungi, we have examined the consequences of disrupting putative ERAD components in the filamentous fungus Aspergillus niger. Deletion of derA, doaA, hrdC, mifA, or mnsA in A. niger yields viable strains, and with the exception of doaA, no significant growth phenotype is observed when compared to the parental strain. The gene deletion mutants were also made in A. niger strains containing single- or multicopies of a glucoamylase–glucuronidase (GlaGus) gene fusion. The induction of the unfolded protein response (UPR) target genes (bipA and pdiA) was dependent on the copy number of the heterologous gene and the ERAD gene deleted. The highest induction of UPR target genes was observed in ERAD mutants containing multiple copies of the GlaGus gene. Western blot analysis revealed that deletion of the derA gene in the multicopy GlaGus overexpressing strain resulted in a 6-fold increase in the intracellular amount of GlaGus protein detected. Our results suggest that impairing some components of the ERAD pathway in combination with high expression levels of the heterologous protein results in higher intracellular protein levels, indicating a delay in protein degradation

    The role of endoplasmic reticulum aminopeptidases in antigen presentation

    No full text
    Endoplasmic reticulum aminopeptidases ERAP1/2 have emerged in the last years as key enzymes for the production of antigenic peptides that are presented by MHC class I molecules at the cell surface as part of the adaptive immune response. ERAP1 has unusual enzymatic properties that make it particularly suitable for this biological function. Specifically, it efficiently degrades peptides longer than 9 residues and shows preferences for the whole substrate sequence and not only for the N-terminus. Recently, coding Single Nucleotide Polymorphisms (SNPs) in ERAP1/2 were associated with predisposition to autoimmune diseases, such as ankylosing spondylitis, with cancer and with resistance to HIV infection. The hypothesis of this thesis is that the particular molecular mechanism of action of ERAP1/2 and the way in which this mechanism is affected by coding polymorphisms is the underlying reason for the association of ERAP1/2 with predisposition to human disease. To verify this hypothesis we investigated the molecular mechanism of action of ERAP1/2 aminopeptidases in the context of their polymorphic variability. We first developed a novel fluorigenic assay to analyze the activity of these enzymes. Biochemical analysis in combination with the recently solved ERAP1 crystal structure allowed us to propose a molecular model of function that can account for both substrate length and sequence specificity. In parallel, we set the groundwork for the development of small molecular weight compounds that modulate ERAP1 activity, by scanning a chemical library of pharmaceuticals and discovering lead compounds that either act as inhibitors or as activators of the enzyme.In order to understand the association of ERAP1/2 polymorphicity with changes in antigen presentation, we expressed different ERAP1/2 alleles and studied their ability to degrade different antigenic epitope precursors. Michaelis-Menten analysis showed that specific SNPs in ERAP1 affect the ΚΜ and kcat parameters of the enzyme and that particular allele-substrate combinations demonstrate substrate inhibition kinetics. A common ERAP2 allele was found to have a stronger effect on enzyme function and, as ERAP1 alleles, not only affects enzymatic activity but also alters specificity. The above results support the hypothesis that genetic variability in ERAP1/2 aminopeptidases can affect the generation of antigenic epitopes and may represent a previously unrecognized facet of adaptive immune response variability

    The role of endocytic trafficking in antigen T cell receptor activation

    No full text
    International audienceAntigen T cell receptors (TCR) recognize antigenic peptides displayed by the major histocompatibility complex (pMHC) and play a critical role in T cell activation. The levels of TCR complexes at the cell surface, where signaling is initiated, depend on the balance between TCR synthesis, recycling and degradation. Cell surface TCR interaction with pMHC leads to receptor clustering and formation of a tight T cell-APC contact, the immune synapse, from which the activated TCR is internalized. While TCR internalization from the immune synapse has been initially considered to arrest TCR signaling, recent evidence support the hypothesis that the internalized receptor continues to signal from specialized endosomes. Here, we review the molecular mechanisms of TCR endocytosis and recycling, both in steady state and after T cell activation. We then discuss the experimental evidence in favor of endosomal TCR signaling and its possible consequences on T cell activation
    corecore