719 research outputs found

    Physical activity heterogenously modulates NG2-glia population behavior, and is necessary for cognitive enhancement

    Get PDF
    NG2-glia is a macroglial population, which constitutes about 5-10% of the total cell population in the mammalian brain. These cells have “stem cell-like” features; for instance, they can proliferate and self-renew and they mostly differentiate into oligodendrocytes, a cell type are of great importance as they myelinate axons in the central nervous system, a process essential for the proper function of vertebrates’ nervous system. Although most myelination happens after birth and completed at a young age, it has been shown that it can also occur during adulthood in mammals. Adult myelination can be modulated by experience, but the exact mechanism of this phenomenon remains unclear. Hence, it is thought that neuronal activity could stop the proliferation and promote the differentiation of NG2-glia, and in turn, newly generated oligodendrocytes could provide the new myelin. However, it is still unclear how neuronal activity could lead to changes in NG2-glia behavior in the adult mouse. In this doctoral thesis, I have used a voluntary physical activity (VPA) mouse model to study the effects of experience on NG2-glia, although other mechanism cannot be discarded. Indeed, our results showed an increase in the proliferation and differentiation of NG2-glia in the cerebral cortical grey matter but not in the corresponding white matter after VPA. We also observed that NG2-glia tend to differentiate with two different modalities, and one of them is preferred during VPA. Furthermore, I performed mass spectrometry of sorted NG2-glia to profile them after VPA, and found that the remaining, non-differentiated NG2-glia show less myelin-related proteins. Interestingly, the results of the proteome analysis correlate with the increase in the number of the GPR17+ subset of NG2-glia, which is characterized by its slow differentiation rate, and I observed that this population remains mostly unaffected by VPA. Finally, for the first time, I found that newly generated oligodendrocytes integrate into the circuitry of the cortex and this myelin remodeling contributes in cognitive enhancement induced by exercise

    Optical recording from respiratory pattern generator of foetal mouse brainstem reveals a distributed network

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Neuroscience 137 (2006): 1221-1227, doi:10.1016/j.neuroscience.2005.10.053.Unfailing respiration depends on neural mechanisms already present in mammals before birth. Experiments were made to determine how inspiratory and expiratory neurons are grouped in the brainstem of fetal mice. A further aim was to assess whether rhythmicity arises from a single pacemaker or is generated by multiple sites in the brainstem. To measure neuronal firing, a fluorescent calcium indicator dye was applied to embryonic central nervous systems isolated from mice. While respiratory commands were monitored electrically from third to fifth cervical ventral roots, activity was measured optically over areas containing groups of respiratory neurones, or single neurones, along the medulla from the facial nucleus to the pre-Bötzinger complex. Large optical signals allowed recordings to be made during individual respiratory cycles. Inspiratory and expiratory neurones were intermingled. A novel finding was that bursts of activity arose in a discrete area intermittently, occurring during some breaths, but failing in others. Raised CO2 partial pressure or lowered pH increased the frequency of respiration; neurons then fired reliably with every cycle. Movies of activity revealed patterns of activation of inspiratory and expiratory neurones during successive respiratory cycles; there was no evidence for waves spreading systematically from region to region. Our results suggest that firing of neurons in immature respiratory circuits is a stochastic process, and that the rhythm does not depend on a single pacemaker. Respiratory circuits in fetal mouse brainstem appear to possess a high safety factor for generating rhythmicity, which may or may not persist as development proceeds.Supported by grants from FONDECYT #1010242 and #7010242 to J.E., NIH DC05259 to L.C., the state of FL to K.M., and an Evelyn and Melvin Spiegel Foundation Award for a summer research fellowship at the MBL to J.E

    A versatile transcription factor: Multiple roles of orthopedia a (otpa) beyond its restricted localization in dopaminergic systems of developing and adult zebrafish (Danio rerio) brains

    Get PDF
    Many transcription factors boost neural development and differentiation in specific directions and serve for identifying similar or homologous structures across species. The expression of Orthopedia (Otp) is critical for the development of certain cell groups along the vertebrate neuraxis, for example, the medial amygdala or hypothalamic neurosecretory neurons. Therefore, the primary focus of the present study is the distribution of Orthopedia a (Otpa) in the larval and adult zebrafish (Danio rerio) brain. Since Otpa is also critical for the development of zebrafish basal diencephalic dopaminergic cells, colocalization of Otpa with the catecholamine synthesizing enzyme tyrosine hydroxylase (TH) is studied. Cellular colocalization of Otpa and dopamine is only seen in magnocellular neurons of the periventricular posterior tubercular nucleus and in the posterior tuberal nucleus. Otpa-positive cells occur in many additional structures along the zebrafish neuraxis, from the secondary prosencephalon down to the hindbrain. Furthermore, Otpa expression is studied in shh-GFP and islet1-GFP transgenic zebrafish. Otpa-positive cells only express shh in dopaminergic magnocellular periventricular posterior tubercular cells, and only colocalize with islet1-GFP in the ventral zone and prerecess caudal periventricular hypothalamic zone and the perilemniscal nucleus. The scarcity of cellular colocalization of Otpa in islet1-GFP cells indicates that the Shh-islet1 neurogenetic pathway is not active in most Otpa-expressing domains. Our analysis reveals detailed correspondences between mouse and zebrafish forebrain territories including the zebrafish intermediate nucleus of the ventral telencephalon and the mouse medial amygdala. The zebrafish preoptic Otpa-positive domain represents the neuropeptidergic supraopto-paraventricular region of all tetrapods. Otpa domains in the zebrafish basal plate hypothalamus suggest that the ventral periventricular hypothalamic zone corresponds to the otp-expressing basal hypothalamic tuberal field in the mouse. Furthermore, the mouse otp domain in the mammillary hypothalamus compares partly to our Otpa-positive domain in the prerecess caudal periventricular hypothalamic zone (Hc-a)

    Intercellular Communication by Exchange of Cytoplasmic Material via Tunneling Nano-Tube Like Structures in Primary Human Renal Epithelial Cells

    Get PDF
    Transfer of cellular material via tunneling nanotubes (TNT) was recently discovered as a novel mechanism for intercellular communication. The role of intercellular exchange in communication of renal epithelium is not known. Here we report extensive spontaneous intercellular exchange of cargo vesicles and organelles between primary human proximal tubular epithelial cells (RPTEC). Cells were labeled with two different quantum dot nanocrystals (Qtracker 605 or 525) and intercellular exchange was quantified by high-throughput fluorescence imaging and FACS analysis. In co-culture, a substantial fraction of cells (67.5%) contained both dyes indicating high levels of spontaneous intercellular exchange in RPTEC. The double positive cells could be divided into three categories based on the preponderance of 605 Qtracker (46.30%), 525 Qtracker (48.3%) and approximately equal content of both Qtrackers (4.57%). The transfer of mitochondria between RPTECs was also detected using an organelle specific dye. Inhibition of TNT genesis by actin polymerization inhibitor (Latrunculin B) markedly reduced intercellular exchange (>60%) suggesting that intercellular exchange in RPTEC was in part mediated via TNT-like structures. In contrast, induction of cellular stress by Zeocin treatment increased tube-genesis in RPTEC. Our data indicates an unexpected dynamic of intercellular communication between RPTEC by exchange of cytosolic material, which may play an important role in renal physiology

    Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update

    Get PDF
    The blood-brain barrier (BBB) is a diffusion barrier that has an important role in maintaining a precisely regulated microenvironment protecting the neural tissue from infectious agents and toxins in the circulating system. Compromised BBB integrity plays a major role in the pathogenesis of retroviral associated neurological diseases. Human Immunodeficiency Virus (HIV) infection in the Central Nervous System (CNS) is an early event even before the serodiagnosis for HIV positivity or the initiation of antiretroviral therapy (ART), resulting in neurological complications in many of the infected patients. Macrophages, microglia and astrocytes (in low levels) are the most productively/latently infected cell types within the CNS. In this brief review, we have discussed about the effect of HIV infection and viral proteins on the integrity and function of BBB, which may contribute to the progression of HIV associated neurocognitive disorders

    The hypoxia-regulated ectonucleotidase CD73 is a host determinant of HIV latency

    Get PDF
    Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis

    Developmental Origin of PreBotzinger Complex Respiratory Neurons

    Get PDF
    A subset of preBötzinger Complex (preBötC) neurokinin 1 receptor (NK1R) and somatostatin peptide (SST)-expressing neurons are necessary for breathing in adult rats, in vivo. Their developmental origins and relationship to other preBötC glutamatergic neurons are unknown. Here we show, in mice, that the “core” of preBötC SST+/NK1R+/SST 2a receptor+ (SST2aR) neurons, are derived from Dbx1-expressing progenitors. We also show that Dbx1-derived neurons heterogeneously coexpress NK1R and SST2aR within and beyond the borders of preBötC. More striking, we find that nearly all non-catecholaminergic glutamatergic neurons of the ventrolateral medulla (VLM) are also Dbx1 derived. PreBötC SST+ neurons are born between E9.5 and E11.5 in the same proportion as non-SST-expressing neurons. Additionally, preBötC Dbx1 neurons are respiratory modulated and show an early inspiratory phase of firing in rhythmically active slice preparations. Loss of Dbx1 eliminates all glutamatergic neurons from the respiratory VLM including preBötC NK1R+/SST+ neurons. Dbx1 mutant mice do not express any spontaneous respiratory behaviors in vivo. Moreover, they do not generate rhythmic inspiratory activity in isolated en bloc preparations even after acidic or serotonergic stimulation. These data indicate that preBötC core neurons represent a subset of a larger, more heterogeneous population of VLM Dbx1-derived neurons. These data indicate that Dbx1-derived neurons are essential for the expression and, we hypothesize, are responsible for the generation of respiratory behavior both in vitro and in vivo

    HIV infection and stroke:current perspectives and future directions

    Get PDF
    HIV infection can result in stroke via several mechanisms, including opportunistic infection, vasculopathy, cardioembolism, and coagulopathy. However, the occurrence of stroke and HIV infection might often be coincidental. HIV-associated vasculopathy describes various cerebrovascular changes, including stenosis and aneurysm formation, vasculitis, and accelerated atherosclerosis, and might be caused directly or indirectly by HIV infection, although the mechanisms are controversial. HIV and associated infections contribute to chronic inflammation. Combination antiretroviral therapies (cART) are clearly beneficial, but can be atherogenic and could increase stroke risk. cART can prolong life, increasing the size of the ageing population at risk of stroke. Stroke management and prevention should include identification and treatment of the specific cause of stroke and stroke risk factors, and judicious adjustment of the cART regimen. Epidemiological, clinical, biological, and autopsy studies of risk, the pathogenesis of HIV-associated vasculopathy (particularly of arterial endothelial damage), the long-term effects of cART, and ideal stroke treatment in patients with HIV are needed, as are antiretrovirals that are without vascular risk

    Clade C HIV-1 isolates circulating in Southern Africa exhibit a greater frequency of dicysteine motif-containing Tat variants than those in Southeast Asia and cause increased neurovirulence

    Get PDF
    Background: HIV-1 Clade C (Subtype C; HIV-1C) is responsible for greater than 50% of infections worldwide. Unlike clade B HIV-1 (Subtype B; HIV-1B), which is known to cause HIV associated dementia (HAD) in approximately 15% to 30% of the infected individuals, HIV-1C has been linked with lower prevalence of HAD (0 to 6%) in India and Ethiopia. However, recent studies report a higher prevalence of HAD in South Africa, Zambia and Botswana, where HIV-1C infections predominate. Therefore, we examined whether Southern African HIV-1C is genetically distinct and investigated its neurovirulence. HIV-1 Tat protein is a viral determinant of neurocognitive dysfunction. Therefore, we focused our study on the variations seen in tat gene and its contribution to HIV associated neuropathogenesis. Results: A phylogenetic analysis of tat sequences of Southern African (South Africa and Zambia) HIV isolates with those from the geographically distant Southeast Asian (India and Bangladesh) isolates revealed that Southern African tat sequences are distinct from Southeast Asian isolates. The proportion of HIV − 1C variants with an intact dicysteine motif in Tat protein (C30C31) was significantly higher in the Southern African countries compared to Southeast Asia and broadly paralleled the high incidence of HAD in these countries. Neuropathogenic potential of a Southern African HIV-1C isolate (from Zambia; HIV-1C1084i), a HIV-1C isolate (HIV-1IndieC1) from Southeast Asia and a HIV-1B isolate (HIV-1ADA) from the US were tested using in vitro assays to measure neurovirulence and a SCID mouse HIV encephalitis model to measure cognitive deficits. In vitro assays revealed that the Southern African isolate, HIV-1C1084i exhibited increased monocyte chemotaxis and greater neurotoxicity compared to Southeast Asian HIV-1C. In neurocognitive tests, SCID mice injected with MDM infected with Southern African HIV-1C1084i showed greater cognitive dysfunction similar to HIV-1B but much higher than those exposed to Southeast Asian HIV − 1C. Conclusions: We report here, for the first time, that HIV-1C from Southern African countries is genetically distinct from Southeast Asian HIV-1C and that it exhibits a high frequency of variants with dicysteine motif in a key neurotoxic HIV protein, Tat. Our results indicate that Tat dicysteine motif determines neurovirulence. If confirmed in population studies, it may be possible to predict neurocognitive outcomes of individuals infected with HIV-1C by genotyping Tat
    corecore