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ABSTRACT

Unfailing respiration depends on neural mechanisms already present in
mammals before birth. Experiments were made to determine how inspiratory and
expiratory neurons are grouped in the brainstem of foetal mice. A further aim was to
assess whether rhythmicity arises from a single pacemaker or is generated by multiple
sites in the brainstem. To measure neuronal firing, a fluorescent calcium indicator dye
was applied to embryonic central nervous systems isolated from mice. While
respiratory commands were monitored electrically from C3-C5 ventral roots, activity was
measured optically over areas containing groups of respiratory neurones, or single
neurones, along the medulla from the facial nucleus to the pre-Boétzinger complex.
Large optical signals allowed recordings to be made during individual respiratory
cycles. Inspiratory and expiratory neurones were intermingled. A novel finding was that
bursts of activity arose in a discrete area intermittently, occurring during some breaths,
but failing in others. Raised pCO, or lowered pH increased the frequency of respiration;
neurons then fired reliably with every cycle. Movies of activity revealed patterns of
activation of inspiratory and expiratory neurones during successive respiratory cycles;
there was no evidence for waves spreading systematically from region to region. Our
results suggest that firing of neurons in immature respiratory circuits is a stochastic
process, and that the rhythm does not depend on a single pacemaker. Respiratory
circuits in foetal mouse brainstem appear to possess a high safety factor for generating

rhythmicity, which may or may not persist as development proceeds.
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It is possible to commit suicide by not eating, but one cannot terminate the
relentless rhythm of respiration by willpower. The rhythm is generated by brainstem
neurons that activate motoneurones; these, in turn, give rise to contractions of
inspiratory and expiratory muscles (Feldman et al., 2003). The activity of brainstem
respiratory neurones is directly modified by altered levels of CO, and H*, and indirectly
by peripheral chemoreceptors (Richter and Spyer, 2001; Feldman et al., 2003; Hilaire
and Pasaro, 2003). Whereas the circuitry that produces rhythmicity in postnatal
mammals has been studied extensively (Bianchi et al., 1995; Ezure, 2004; Feldman et
al., 2003; Ramirez and Richter, 1996), less is known about the organization of the
respiratory network during embryonic life.

In preparation for birth, breathing movements, without air intake, occur in
embryos (Boddy and Dawes, 1975). In mouse and chick, rhythmic activity appears
when the rhombencephalon and respiratory circuits become defined through activation
of homeotic genes (Champagnat and Fortin, 1997). By E16, fictive respiration of mice
can be monitored from phrenic motoneurones (Viemari et al., 2003) .

A key question is whether foetal rhythms are produced by a group of
pacemaker cells, or by reciprocal connections, such as those commanding motor
behaviours in vertebrates and invertebrates (Marder and Calabrese, 1996). A focussed
pacemaker would be expected to initiate activity spreading from one region of the
medulla (Rybak et al., 2003). The spatial distribution in foetal brainstem of inspiratory
and expiratory neurons is unknown. Experimental difficulties in analyzing developing

respiratory neurons arise from the intrauterine location of the foetus, the ventral
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position of the pattern generator in the medulla, and from the limited number of
neurons from which electrical recordings can be made simultaneously.

In the present experiments we recorded signals from neurons in isolated
brainstem-spinal cord preparations after application of a calcium-sensitive fluorescent
dye. Regions across the medulla were surveyed and their activity measured. In foetal
preparations, unlike slices, brainstem respiratory nuclei are still in their normal
relationships with each other and with motoneurons (Suzue, 1984). The rhythm of
fictive respiration increases in frequency and reliability from E16 to E18, when the rate
in the isolated preparation approximates that of the newborn pup (Viemari et al., 2003).
This rhythm persists for more than 24 hours in vitro, even though all peripheral tissues
are removed. That the mouse embryonic brainstem is thin and relatively transparent is
advantageous for recording optical signals. Patterns of activity over foetal rat and
newborn rat and mouse medulla were studied by Onimaru and his colleagues by
means of voltage sensitive dyes (Onimaru and Homma, 2005; Onimaru et al., 2004;
Onimaru and Homma, 2003). In those experiments the signal to noise ratio required
averaging of 20-50 respiratory cycles. Calcium sensitive dyes could in principle give
better signal-to-noise ratios, since calcium signals mirror integrated bursts rather than
single impulses, and such dyes have been used in foetal mouse brain slices (Thoby-
Brisson et al., 2005). Moreover, Ca?* signals arise primarily from cell bodies and the
axon stump rather than axons and dendrites, in which less Ca** accumulation occurs

(Przywara et al., 1991; Ross, 1989).
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Experimental Procedures

Experiments were made according to the Institute for Laboratory Animal
Research Guide for the Care and Use of Laboratory Animals and were approved by
Institutional Animal Care and Use Committees at the Marine Biological Laboratory and
the University of Miami. Methods for euthanasia were in agreement with the “Report of
the AVMA Panel on Euthanasia (2000)”.

Animals: 34 CF1 and CD1 mouse embryos aged 16 to 20 days were removed
by Caesarian section from pregnant animals (Charles River Laboratories Inc.,
Wilmington, MA) under anaesthesia (ketamine/xylazine, 80 / 20 mg Kg™ i.p.); mothers
were Killed by anaesthetic overdose. Embryos were placed in 4 °C artificial
cerebrospinal fluid (aCSF) and killed instantaneously by removal of the heart. aCSF
contained (mM): NaCl, 125; NaHCO3, 24; KCI, 5; CaCly, 1.0 ; MgSOy4, 1.25; KH2POy4,
1.25; glucose, 30; equilibrated with CO2:02 = 5%:95% (pH = 7.4). The cerebrum was
removed by ponto-mesencephalic transection.

Calcium indicator dye: Brainstem spinal cords were incubated in 0.5 ml of
gassed aCSF containing fluorescent high-affinity calcium-sensitive dye, Oregon Green
488 Bapta-1, AM (Molecular Probes, Eugene, OR) initially dissolved in 10 ul of 20%
Pluronic F-127 in DMSO (Molecular Probes, Eugene, OR). The dye in its AM form is
transported into cells and enzymatically cleaved to render it impermeant.
Concentrations of 300-500 pug ml™ and incubation periods of 45-60 minutes were
optimal for staining without reduction in respiratory frequency. The lower affinity dyes
Oregon Green 488 BAPTA -2, AM (300 ug ml'1) and Oregon Green 488 BAPTA -6, AM

(150-600 pg ml™") (Molecular Probes, Eugene, OR) were less effective.



Eugenin et al. 7

Electrical recording: Preparations were pinned to Sylgard 184 resin (Dow-
Corning, Midland, MI) in a 1.0 ml chamber, and superfused continuously with gassed
aCSF (3to 4 ml - min™") at 23-25 °C (room temperature), or at 29.5°C (temperature
controller, TC-344B, Warner Instruments Co.). At the higher temperature the frequency
of fictive respiration increased by about 50%. Electrical signals recorded with suction
micropipettes from C3-C5 ventral roots, were amplified by a P15 Grass amplifier (Grass
Instrument Co., Quincy, MA), filtered at 100-3000 Hz., and integrated with a full-wave
rectifier (t=100 ms). Electrical signals and optical images were stored in a computer.
Medullary unit recordings were made with glass microelectrodes filled with 0.2 M NacCl,
resistance 3-8 MQ.

Optical recording: Changes in calcium fluorescence were detected by a CCD
camera (NeuroCCD-SM 256; RedShirtimaging, LLC, Fairfield, CT, USA) and an
epifluorescence microscope (Nikon Eclipse EF600 or Zeiss WL) with heat filter,
fluorescein filter set, and 40x, 0.75 NA water immersion objective. The CCD camera
had an imaging area of 256x256 pixels with a time resolution to 10 ms and image
diameter of 400 to 500 um, depending on the microscope. Fluorescence changes were
expressed as percentages (change in fluorescence intensity compared to the resting
light intensity image). Changes of less than 1% could be detected. At the illumination
intensities used, about 3% of the dye bleached during a 20 sec recording, with no
effect on the regularity of the signal or on recordings from the same region made
minutes later. To test for reliability, records were made from an area and then from
distant areas of medulla, returning 15-20 minutes later to the original spot, where the

activity remained unchanged. The plane of focus was altered to observe signals arising
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25-50 um below the surface; the pattern of responses over an area was similar to that
recorded from the surface. To avoid movement artefacts, the flow was stopped during
optical recordings.

Data analysis: Optical and electrical data were acquired, and analyzed using
the NeuroPlex program (RedShirtimaging). Acquisition trials constituted a series of
frames at 20-40 ms intervals, over 20 s or 40 s. Signals were processed with 2x2-pixel
binning to reduce noise, and digitally with high- and low-pass temporal filters; kernel
averaging permitted display of spatially averaged signals from selected regions of
adjustable size ranging from circular fields of 60 um diameter to areas corresponding to
the diameter of individual neurons. Recordings such as those in Figures 1, 2 and 4
concern phase relations and magnitudes of signals: their shapes depend on filtering.
Sequences of images were displayed as videos (attached as Supplementary Material)

using standard compression protocols with NeuroPlex.
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Results

Optically recorded respiratory rhythms.

Figure 1A shows optical signals recorded from the ventral surface of the rostral
medulla, caudal to the facial nucleus level during fictive respiration (E17 preparation).
The lower trace (red) shows the integrated electrical activity from ventral root C5;
expiration occurred between the peaks. The frequency of fictive respiration in 34
preparations was 15.5 + 1.0 min™ (mean + SEM) and the duration of the inspiratory
burst was 0.40 + 0.05 s. Respiratory rhythms persisted for more than 7 h in
preparations stained with dye, and unlike locomotor activity, were synchronous on both
sides of the cervical spinal cord segment. The optical signals shown in Fig. 1A
originated in a 0.4 mm diameter region of medulla indicated by the larger circle in the
upper-right rectangle. Twenty coloured circles represent selected areas over which
optical signals were measured. Coloured traces show changes in fluorescence that
accompanied respiration and averaged over corresponding areas. The optical signals in
the areas marked red and pink, for example, were linked to inspiration and had
excellent signal to noise ratios. For clarity, optical signals from only a few areas are
shown in Fig. 1A, although the entire field in view with the 40x lens could be explored
in detail and compared with displays of the data as video movies (see Fig. 2 and
supplementary material). Features of optical signals were good signal to noise ratios
for a single cycle, and widespread areas from which signals arose. When fields of
activity were examined pixel by pixel, records like those of Fig. 1B were obtained. Here
the three areas surveyed (indicated by turquoise, brown and blue spots and traces),

were at 6 pixels in diameter as small as the expected diameter of single neurons (two
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pixels corresponded to ~3 um, while the diameters of cell bodies ranged from 8 to

14 um). When the spot was moved minimally (two or three pixels) from the central
point, the signal became smaller or disappeared. Figure 1B further shows expiratory
(brown and blue traces), together with inspiratory activity (turquoise). Activity
corresponding to expiration was observed rarely, compared to signals accompanying
early phases of inspiration (in 10 areas out of 120 sampled showing phase locked
signals). Occasionally, optical signals were not related to the phases of respiration. The
distribution of brainstem areas showing respiratory activity was mapped by systematic
exploration in 10 preparations. Optical signals arose over areas situated laterally along
the medulla, from the facial nucleus level to the pre-Botzinger complex level.

The spatial pattern of activity from breath to breath is shown over one field in Fig. 2
while the shutter was open for 40 s (Supplementary video). In this field with
predominantly inspiratory activity frames 2A and C (timing indicated by thin black lines
to integrated C5 phrenic nerve activity) display surges (red) in activity during
inspiration, with lowered activity in Frames 2B and D related to expiration. If the rhythm
of respiration in foetal midbrain had arisen from a single pacemaker, one might expect
activity to spread from one region to another, say from rostral to caudal or vice versa.
Inspection of continuous films of activity such as those used in Fig. 2 failed to reveal
progressive waves across the fields, either systematically or in a different pattern with
each breath.

Intermittent signals at physiological pH.
At pH 7.4, patterns of optical activity recorded from a particular area were either

regular (Fig. 1B), or intermittent. For example in Figure 1A the adjacent areas coloured
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in red and pink gave large signals that failed in some cycles. In records from 3
experiments with good signal to noise ratios, 93 failures occurred in 309 respiratory
cycles, while in adjacent areas failures did not occur or were out of phase. These
results suggested that the recruitment of respiratory units might be stochastic during
each cycle: all inspiratory neurons might not be used for every cycle.

Published electrical recordings made from single neurons in the medulla do not
generally show intermittent failures (Ezure, 2004). Electrical recordings were made
from respiratory neurons in foetal medulla to measure regularity. Fig. 3 shows burst
durations of medullary units that vary with each cycle, with occasional failures.
Apparent discrepancies between electrical and optical recordings might occur because
calcium signals reflect bursts rather than single action potentials, and possibly
because units that fire intermittently might have been ignored in earlier published
experiments.

Effects of changing pH or pCO..

Further evidence that optical signals corresponded to fictive respiration was
provided by applying low pH or high pCO; solutions to 15 isolated CNS preparations.
Changes of pH from pH 7.3 to 7.1 or 7.4 to 7.2 (brought about by increased CO; or by
lowered bicarbonate concentration), increased the respiration frequency by 52.9% +
11.4% (p= 0.0015, Wilcoxon signed-rank test, n=15). Fig. 4 shows that failures of

optical signals did not occur at pH values of 7.3 or lower.
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Discussion

Calcium signals during respiratory activity.

Changes in intracellular calcium concentration produced optical signals that
were measurable during a single cycle without averaging, even when small areas were
monitored. Presumably the excellent signal to noise ratio was possible, in part,
because signals represented bursts rather than single action potentials, in cell bodies
and dendrites. In studies made with voltage sensitive dyes, signals became large
enough to analyse only after averaging the effects of 20 to 50 respiratory cycles
(Onimaru and Homma, 2003; Onimaru et al., 2004; Onimaru and Homma, 2005). What
cannot be said with certainty is the cellular basis for changes in optical activity.
Although identified glial cells are not evident at early stages of development, their
participation cannot be ruled out. The close correspondence between electrical records
of medullary units and optical records suggests that neurones are responsible; to
prove their role requires simultaneous electrical and optical recording from single
neurons or glia, a formidable task. A further problem concerns the depths of cells that
gave rise to optical signals. A limitation of the present technique is that successful
signals cannot be obtained from deeper than a few hundred microns within the
medulla.

“Respiration” in foetal mice.

The brainstem machinery for producing rhythmical movements for respiration is
already present in mouse or human embryos. Prematurely born mammals can breathe
the instant they are born, even though respiratory movements in the uterus do not

entail intake of air (Viemari et al., 2003).
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Intermittent failures of optical and electrical signals.

Our finding that groups of medullary neurons associated with inspiration might
not fire with every breath was unexpected. Published electrical recordings do not show
“failures”. What medullary units show is inconstancy of burst duration and frequency
from breath to breath in newborn opossum (Zou, 1994) or foetal mouse (see for
example Figure 3); such irregularity would be reflected as irregular calcium signals.
The presence of “failures” suggests that the rhythm could be generated by a stochastic
process of the type seen in other rhythm generators (Kopell and LeMasson, 1994). For
example, in locomotor circuits not every neuron is active with every movement (Butt et
al., 2002).

Organisation of respiratory neurons in foetal mouse.

Changes that occur in respiratory mechanisms as the foetus develops and
becomes adult have been studied in several mammals (Hilaire and Duron, 1999), with
emphasis on regulatory mechanisms, and the possible role of pacemaker neurons at
successive stages (Del Negro et al., 2005; Pefia et al., 2004). Maps of respiratory
activity in newborn rat and mouse made with voltage sensitive dyes suggested that the
respiratory activity started in each cycle on a discrete group of neurons located in the
para-facial region, and then it was propagated caudally into the pre-Boétzinger complex
level (Onimaru and Homma, 2003; Onimaru et al., 2004). By contrast, in animals after
birth, the origin of the rhythm appeared to be related to the pre-Botzinger complex
(Feldman et al., 2003; Onimaru and Homma, 2005). In our experiments, the area
examined in each recording field was smaller than that observed by Onimaru and his

colleagues (Onimaru and Homma, 2003; Onimaru et al., 2004; Onimaru and Homma,
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2005). The area over which rhythmicity arose was assessed by moving from place to
place on the ventro-lateral surface of the medulla, from the facial nucleus to the pre-
Botzinger complex. From video records of activity over periods of 20-40 s, we saw no
evidence for a discrete group of pacemaker cells from which activity spread. In a
particular region, activity did not proceed as a coordinated progressive wave. Instead,
signals arose from the whole area in a synchronous, coordinated manner during
inspiration. Moreover, the signal to noise ratio was good enough for each breathing
cycle to be examined on its own without averaging. Our results suggest that, rather
than a pacemaker generating the rhythm at one spot, whole areas could be active at
once, as if rhythmicity depended on a diffuse network. Support for such an idea comes
from records of fictive respiration in the newborn opossum (Eugenin and Nicholls,
1997). There it was found that application of fluid with altered pH from a micropipette to
a localised area of medulla modified the rate of respiration. Similarly, localised
application of procaine temporarily blocked respiratory activity (Eugenin and Nicholls,
2000). An important feature of these experiments was that results were obtained when
the solution was applied locally to any point within the region containing respiratory
units.
Conclusion.

Our results suggest that the circuitry in foetal brainstem that gives rise to the
rhythm of respiration consists of a distributed neuronal network. Moreover, although
neurones may not fire with every breath, they can all be recruited to fire unfailingly in

low pH or high CO,. This type of circuit would provide a high safety factor for
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maintaining foetal respiration. It remains open whether similar mechanisms for
generating the rhythm are present in the adult.
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Figure Legends

Figure 1. a. Fluorescence changes in rostral medulla (traces on the left) and
integrated C4 “phrenic” ventral root burst activity (bottom trace) in brainstem-spinal
cord preparation (E17 mouse, 5% CO», pH 7.4), stained with calcium-sensitive dye.
Scheme and photograph of the preparation (right) indicate, in colours corresponding to
optical traces, the areas for averaging the fluorescence (right, top). Blue, red and pink
lines, for example, join medullary areas surveyed for averaging with corresponding
optical traces. Note that spots showing respiratory-related activity are distributed along
a rostrocaudal column. b. Inspiratory- (top trace) and expiratory-related (second and
third traces) fluorescence changes recorded optically from rostral medulla (E20
brainstem-spinal cord). Integrated C4 ventral root activity is shown below.
Fluorescence signals were averaged over areas corresponding to cell bodies of
fluorescent neurones. Colored lines join areas in medulla used with their respective

optical recordings.

Figure 2. Pseudocolor images of fluorescence during inspiratory (A,C) and expiratory
(B,D) respiratory cycles. (E18 mouse brainstem preparation, 5% CO;, pH 7.3.) Timing
of optical recording frames A-D is indicated by lines projecting to the integrated C5
motoneuron activity. Within the field of view, the region of highest optical activity (red)
corresponding to peak Ca?* concentration is similar from one episode to the next during
inspiration. In this region of strong optical activity during inspiratory phases, expiratory

phases of activity are less evident. The full sequence of images is presented as a
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movie in a Supplementary Figure, which shows no progressive waves, but rather
periodic surges of activity predominantly in the middle and right of the field.

Figure 3. Medullary units (Med unit), with unitary (C5) and integrated (/nt) respiratory
activity recorded from C5 ventral root. Burst durations and frequency of medullary units
varied greatly, with what appeared to be failures in some cycles, as shown in the lower

expanded traces. (E18 mouse embryo, pH 7.3, 5% CO..)

Figure 4. Effect of acidification on respiratory rhythm in a preparation from an E18
mouse. The lower trace of integrated activity from C4 (red) and optical activity showed

increases in frequency from 12 min™ to 18 min™ when pH was changed from pH 7.3 to

7.2 by raising CO; from 5% to 10%.

Supplementary material.

Videos taken from the experiment of Figure 2 ( E18 mouse brainstem) by combining
frames taken every 40 ms. Pseudo colour shows increased calcium concentration (red)
in the spectrum. Below is integrated motoneuron activity recorded from C5 (as in Fig.
2). A small red spot moving on the electrical recording trace indicates the timing of
frames. Videos 1 and 2 are processed to show activity in two over the surface of the
medulla and in three dimensions, the third dimension indicating scaled change in
fluorescence intensity, with red (up) most intense. During inspiration a peak of activity
covers the entire field with no discernible movement in a particular direction. During

expiration calcium signals are diffuse and noisy.
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