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Abstract 

 

NG2-glia is a macroglial population, which constitutes about 5-10% of the total cell population in 

the mammalian brain. These cells have “stem cell-like” features; for instance, they can proliferate 

and self-renew and they mostly differentiate into oligodendrocytes, a cell type are of great 

importance as they myelinate axons in the central nervous system, a process essential for the 

proper function of vertebrates’ nervous system. Although most myelination happens after birth 

and completed at a young age, it has been shown that it can also occur during adulthood in 

mammals. Adult myelination can be modulated by experience, but the exact mechanism of this 

phenomenon remains unclear. Hence, it is thought that neuronal activity could stop the 

proliferation and promote the differentiation of NG2-glia, and in turn, newly generated 

oligodendrocytes could provide the new myelin. However, it is still unclear how neuronal activity 

could lead to changes in NG2-glia behavior in the adult mouse. In this doctoral thesis, I have used 

a voluntary physical activity (VPA) mouse model to study the effects of experience on NG2-glia, 

although other mechanism cannot be discarded. Indeed, our results showed an increase in the 

proliferation and differentiation of NG2-glia in the cerebral cortical grey matter but not in the 

corresponding white matter after VPA. We also observed that NG2-glia tend to differentiate with 

two different modalities, and one of them is preferred during VPA. Furthermore, I performed 

mass spectrometry of sorted NG2-glia to profile them after VPA, and found that the remaining, 

non-differentiated NG2-glia show less myelin-related proteins. Interestingly, the results of the 

proteome analysis correlate with the increase in the number of the GPR17+ subset of NG2-glia, 

which is characterized by its slow differentiation rate, and I observed that this population remains 

mostly unaffected by VPA.  Finally, for the first time, I found that newly generated 

oligodendrocytes integrate into the circuitry of the cortex and this myelin remodeling contributes 

in cognitive enhancement induced by exercise.

 

  



Introduction 

8 
 

Introduction 

 

The end of the neuro-centric view of the world 

The nervous system has the fundamental task of transmitting and processing information. 

All animals have some kind of nervous system, except distant relatives from the Porifera phylum. 

The ability to perceive our environment, to be self-aware, to run, to fear, to memorize, or, for my 

dearest readers, to enjoy this thesis, are all results of this complex system.  

Mammals’ nervous system can be broadly divided into: the central nervous system (CNS) 

and the peripheral nervous system (PNS). The former is composed of the brain and the spinal 

cord, and the latter by nerves and ganglia. Thereby, PNS acts as the interface between peripheral 

tissues, such as the retina, salivary glands, muscles, or stomach, and the CNS. In its turn, the CNS 

can process afferent input or exert action on the periphery, such as interpretation of visual input, 

increase saliva secretion in response to the smell of a delicious meal, or to feel stomach 

butterflies when your loved one passes you by. 

The nervous system parenchyma is mainly composed of two cell populations: neurons 

and glial cells. Neurons are electrically excitable cells with a prototypic morphology: dendrites, 

soma, axon, and axon terminal. These cells have been the focus of neuroscientists for more than 

a century, and for good reasons. Any neuroscience textbook would show that an average mouse, 

and human brain contains ~ 7*107 and ~ 1012 neurons , respectively (Ero et al. 2018; von 

Bartheld, Bahney, and Herculano-Houzel 2016). Neurons are key players for information 

processing and transmission in the nervous system due to four features. First, their membrane 

potential is dynamic and modified by a broad spectrum of stimuli provided by other neurons, 

non-neuronal cells, or directly from external sources (e.g., heat, pain, pH). The depolarization of 

the membrane potential can trigger an “action potential,” which is a discrete, abrupt, and 

transient reversal of the membrane potential that represents the mechanism of encoding 

neuronal information. Second, information within a neuron flows from the initial to the terminal 

axonal segments. This propagation is possible thanks to the depolarization-dependent 

regeneration of action potentials along the axonal segments, which allows them to travel long 
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distances to depolarize the axon terminal compartment. Third, neurons are connected and 

transmit information through the “synapses,” which are formed between axon terminals of one 

neuron and the dendrites of another one, allowing the formation of networks and providing the 

foundation of information processing. Neurons can also communicate with other cell types to 

receive a signal when stimulated or deliver a message to execute a function. Fourth, there is an 

extraordinary variety of neuronal types that can promote or inhibit the networks activity, tuning 

the circuit and resulting into different outcomes. 

These principles give the impression that neurons have monopolized the computational 

capacities of the nervous system, and thereby, neuroscience research. Nevertheless, it has been 

shown that neurons cannot regulate several of their cellular processes by themselves, such as 

energy and neurotransmitters metabolism, homeostasis, repair, as well as sensory reception and 

information processing. Were scientists overseeing something? Over the last two decades, 

neuroscientists are turning their heads towards the other major group of cells in the nervous 

system, the glial cells to search of answers. 

 

The rise of the glia golden age 

 The term “glial cells” lacks a biological description for this group of cells. Its historical 

origin is due to misconceptions of researchers at the time. Rudolf Virchow first coined the term 

“glia” and published it in the article “Über das granulierte Aussehen der Wandungen des 

Gehirnventrikels” in 1856. In this context, Virchow was pursuing to study the connective tissue of 

the brain, and initially, he was convinced that a large population of cells composed it. He called 

them “glial cells,” which derives from the Greek word “glue” because he speculated that their 

primary function was a structural one: “to keep the nervous tissue together.” Virchow published 

his textbook “Cellularpathologie” in 1858, which became an important starting point to the 

research of this newly discovered cell population. 

 For this reason, the term is currently used as a synonym for non-neuronal cells. Notably, 

it is estimated that the total number of glial cells in CNS is similar to the neuronal population, 

being ~3*107 in mice and ~5*1011 in humans (von Bartheld, Bahney, and Herculano-Houzel 
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2016; Ero et al. 2018), representing something around 30 – 50% of the total cell population of 

the CNS. This imprecise number is due to differences in number of glial cells within the various 

CNS regions in the species that had been studied.  

During the last decade considerable efforts have been made to describe the glia identity 

and their function in-depth, which has provided a roughly coherent classification of the glial cells 

in the nervous system. In principle, glial cells are divided according to their localization in the 

nervous system: in the PNS, e.g., Schwann cells, satellite cells, and enteric glial cells, and in the 

CNS. The latter, in turn, is classified regarding their embryonic origin. Microglia, rising from the 

mesoderm, and macroglia, deriving from the neuroectoderm. Macroglia includes astrocytes, 

ependymal cells, radial glia, oligodendrocytes, and, only recently categorized, NG2-glia.  

In this doctoral thesis, the focus will be set mainly in the NG2-glia population and how 

experience-related events modify their behavior, and, their possible role in information 

processing in the CNS. In order to describe the intrinsic characteristics of the NG2-glia population 

and to distinguish this population from the rest of the glia, I will provide a brief description of 

other glial cells in the CNS. This characterization will evidence their fundamental role in the 

nervous system function and essential players in regulating neuronal activity and neural network 

functions. 

 

Glial cells in the CNS and their interactions with neurons and circuits 

 As mentioned earlier, CNS glial cells can be classified into two major groups: microglia and 

macroglia. This categorization, mainly given by their different ontogeny, does not reflect on the 

distinctive functions and morphologies among these cells. Therefore, in the next section of this 

introduction, I will describe the different glial cells in the CNS, setting our focus solely on the four 

largest populations present in the adult brain: microglia, astrocytes, oligodendrocytes, and NG2-

glia. 
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Figure 1. The mammalian CNS has four major glial cell populations: astrocytes, microglia, oligodendrocytes, and 
NG2-glia. Here I illustrate that all glial cells have physical interaction with neurons. Astrocytes are associated to the 
soma, axons, and synapses of neurons, the latter known as the tripartite synapse. Additionally, astrocytes are 
associated to the arterioles by the astrocytic end-foot and they are connected with other astrocytes as well as with 
oligodendrocytes through gap junctions known as “connexins”. Microglia interact physically with synapses through 
neuron-microglia contacts. Oligodendrocytes extensive membrane wraps around axons forming the myelin sheath, 
which provides not only the electrical insulation of axons but also by this structures oligodendrocytes support 
metabolically neurons. NG2-glia, the cells that generate oligodendrocytes, also interact with axons by forming 
neuron-NG2-glia synapses. All these structures are important for the regulation of neuronal activity and, in 
consequence, enable the glial cells to modulate the CNS circuits; therefore, information processing. 

 

Microglia and the “innate immune system” of the CNS 

 Microglia constitute ~10% of the total cells in the adult mouse CNS (Ero et al. 2018; 

Lawson et al. 1990).They are the CNS immunocompetent cells having many similarities regarding 

markers and functions with the monocyte-macrophages family in the periphery (Fig.1). Microglia 

derive from early hematopoietic precursors cells from the yolk sac (Alliot, Godin, and Pessac 

1999; Ginhoux et al. 2010), which, in turn, are descending from germinal cells of the mesodermic 

germ layer. During development, microglia exit the yolk sac and invade the brain at ~E9.5 and 

rapidly expand in the CNS, reaching ~95% of their final population at postnatal day 2 (P2) in mice 

(Alliot, Godin, and Pessac 1999). After their expansion, microglia keep constant their population, 
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not requiring additional peripheral progenitors, even after total population depletion (Askew et 

al. 2017; Bruttger et al. 2015). Once settled in the CNS, microglia constantly surveil and sense the 

immediate environment through their high dynamic processes (Nimmerjahn, Kirchhoff, and 

Helmchen 2005; Davalos et al. 2005), thereby, together with their immunogenic origin, 

researchers have studied the role of microglia in pathology profoundly.  

Microglia are the first cells in the frontline and react quickly in a broad spectrum of CNS 

insults and pathologies.  Microglia respond to injuries in CNS by extending their processes and 

polarizing towards the insult, proliferating, and becoming hypertrophic (Davalos et al. 2005; 

Nimmerjahn, Kirchhoff, and Helmchen 2005; Simon, Gotz, and Dimou 2011), a process that 

appears to be regulated by the ATP released from damaged tissue (Davalos et al. 2005). There 

are many additional molecular signals like danger-associated molecule patterns  (DAMPs) and 

inflammatory cytokines, such as interferon γ (IFN-γ), interleukin (IL-1α), IL-6, and tumor necrosis 

factor α (TNF-α) that also participate in this process (Donat et al. 2017). Neurodegenerative 

diseases in which chronic neuroinflammation is observed, microglia react strongly by changing 

their morphology and gene expression profile (Salter and Stevens 2017; Song and Colonna 2018). 

So far goes our understanding, the functions of microglia in pathology appears to be 

inflammation modulators, providing both pro- and anti-inflammatory cytokines to coordinate 

various cell populations, to engulf aggregates of protein, debris and dead cells, provide repair 

signals, etc. (Song and Colonna 2018). 

The extensive role of microglia in pathology has caught most of the attention of 

researchers because of their potential translational and, hence, medical relevance. By 

comparison, there is less understanding of the microglial role in the healthy brain. Nonetheless, 

there are significant advances in exploring the different functions that microglial might have in 

modifying neuronal activity.  

One of their most important functions is related to the proper development of neuronal 

circuits during development. Shortly after birth, microglia engulf multiple synapses, in a process 

known as “synaptic pruning” and sculpts neuronal dendrites by reducing the number of spines; 

the structure in which synaptic input is received.  The disruption of this biological process leads 
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to the delay of synaptic maturation of the hippocampus (Paolicelli et al. 2011). The mechanisms 

and signals for synaptic pruning are not entirely understood, but it appears that fraktalkine and 

complement pathway (especially complement receptor/complement 3 (CR/C3)) are essential 

(Schafer et al. 2012; Paolicelli et al. 2011) and neuronal activity input seems to be crucial to its 

proper delivery (Schafer et al. 2012). This unprecedented function has raised the question; how 

does microglia know where synapses are? And how neuronal activity is transferred to microglia? 

Furthermore, in the healthy adult brain, a close structural interaction between microglia 

processes and neuronal synapses, denominated “microglia contact,” (Fig. 1)  has been shown by 

various methods, such as electron microscopy (EM), immunostaining, and in vivo two-photon 

microscopy (Wake et al. 2009; Akiyoshi et al. 2018). Notably, this interaction seems to be 

experience-dependent. For example, such contacts decrease in the visual pathway by reducing 

neuronal activity by either deprived visual input by ocular tetrodotoxin (TTX) injection (Wake et 

al. 2009) or by housing animals in the dark (Tremblay, Lowery, and Majewska 2010).  

Little is known about the function of microglia-neuron contacts, but it is tempting to 

suggest that they represent a mechanism to supervise the neuronal activity. Moreover, microglia 

do express receptors for different neurotransmitters, such as glutamate, γ-aminobutyric acid 

(GABA), serotonin, substance P, histamine, purinergic mediators. Their application leads to 

behavioral changes in microglia, such as process extension, polarization, migration, and changes 

in intracellular calcium (Davalos et al. 2005; Fontainhas et al. 2011; Seifert et al. 2011). What 

seems intriguing is that it has been reported that the sudden physical interaction between a 

microglia process and a dendritic spine leads to an increase in the frequency of local calcium 

(Ca+2) transients in dendritic spines, promoting local circuitry synchronization (Akiyoshi et al. 

2018). Thus, it seems that these contacts are not just for a mere monitoring but also have a 

modulatory effect on synaptic transmission, neuronal activity, and circuit plasticity by 

mechanisms that are still poorly understood. 

Microglia possess a comprehensive set of skills that allow them to contribute to brain 

plasticity. For instance, as explained above their ability to engulf and remove synapses during 

development. Moreover, under pathological conditions, microglia remove synapses in adult mice 
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after PNS injury, known as synaptic stripping, which makes it a possible mechanism for plasticity 

(Kettenmann, Kirchhoff, and Verkhratsky 2013). Nonetheless, it was thought that this process 

does not take place in the healthy adult brain. Only very recently, it has been shown that 

microglia actively engulf synapses to promote the extinction of fear-related memories by 

targeting synaptic spines through a complement-dependent mechanism in the adult healthy 

mouse brain (Wang, Yue, et al. 2020). The inhibition of the complement pathway leads to 

deteriorated fear-conditioned extinction (Wang, Yue, et al. 2020). 

It has also been shown that microglia may have additional mechanisms to modulate brain 

plasticity. For instance, ablation of microglia leads to deteriorated dendritic spine turn over, and 

reduced learning or memory capacities (Parkhurst et al. 2013). In this process, researchers found 

that brain-derived neurotrophic factor (BDNF) secreted by microglia played a significant role 

(Parkhurst et al. 2013). Furthermore, it has been described that microglia are essential regulators 

of neurogenesis in the classical neurogenic niches, removing cells undergoing apoptosis through 

phagocytosis (Sierra et al. 2010), and also provide signals that promote proliferation and 

differentiation of neural stem cells (NSCs) in vitro and in vivo (Walton et al. 2006; Battista et al. 

2006). Thus, microglia regulate the number of newly generated neurons that would be, later, 

integrated into the brain circuitry, contributing to a new way of brain plasticity. 

 

Macroglia and their broad spectrum of different glial cells 

As previously mentioned, all macroglia in the CNS originate from pseudostratified cells 

that conform the neural plate, known as neuroepithelial cells, and are sustained by multiple 

symmetric divisions (Dimou and Gotz 2014; Kriegstein and Alvarez-Buylla 2009). These cells 

become an apical-basal polarized cells named “radial glia,” which in turn proliferate 

asymmetrically to generate the different cells in the CNS (Kriegstein and Alvarez-Buylla 2009; 

Dimou and Gotz 2014).  

During mice development, after E8, radial glia give rise to neurons, a process known as 

“neurogenesis” that continues thoroughly after birth and even into adulthood but only in 

selected regions called “neurogenic niches,” such as the dentate gyrus (DG) of the hippocampus, 
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the subventricular zone (SVZ, or subependymal zone in adult), and the hypothalamus (Anthony 

et al. 2004; Kriegstein and Alvarez-Buylla 2009; Dimou and Gotz 2014; Kempermann, Kuhn, and 

Gage 1997; Knoth et al. 2010). Interestingly, adult neurogenesis is experience-dependent by 

mechanisms that are still not fully understood (Kempermann, Kuhn, and Gage 1997; van Praag 

et al. 1999). Radial glia also originates other glial cells later in embryonic development, such as 

astrocytes and NG2-glia, the latter also known as oligodendrocyte progenitor cells (OPCs) that 

eventually will differentiate into oligodendrocytes. During development, the generation of glial 

cells is known as “gliogenesis” (Kriegstein and Alvarez-Buylla 2009). 

 

Astrocytes, the current “big stars” among glial cells in the CNS 

Astrocytes are one of the most studied population of glial cells of the CNS (Fig.1) (Sierra 

et al. 2016) and, thereby, they have been bestowed with many functions in the healthy and 

pathologic CNS. Some estimates suggest that the astrocyte population might represent between 

~5 – 20% of the cells in the mouse brain (Ero et al. 2018; Sun et al. 2017) and ~20%  in the human 

brain (Pelvig et al. 2008); however, we still ignore the exact number of astrocytes and studies do 

not find agreement on the topic. 

 Astrocytes morphology is commonly described as multiprocessed “stellate-shaped” cells, 

a description very distant from precise. They indeed have many cytoplasmic projections, with a 

well-defined arrangement. Close to their cell body are few thicker projections, known as “primary 

branches” and from these, smaller extensions protrude, which, in turn, even thinner processes 

arise. Thereby, astrocytes form a very compact dense mesh of projections, having a more 

spongiform-like morphology (Sofroniew and Vinters 2010; Bushong et al. 2002; Xu, Wang, and 

Zhou 2014; Ogata and Kosaka 2002).  

Astrocytes are impressively heterogeneous. In terms of their morphology, they are 

classified as “protoplasmic,” which have many short, dense isotropic-distributed processes, and 

can be found mainly in the cortical grey matter (GM) and hippocampus (Bushong et al. 2002; 

Ogata and Kosaka 2002).. They establish individual cell-territories in such a way that only ~5% of 

the volume domain overlaps to each other, providing a homogeneous distribution (Bushong et 
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al. 2002; Oberheim et al. 2009; Wigley et al. 2007). In contrast, astrocytes in the white matter, 

specifically in the corpus callosum, have been defined as “fibrous,” having less ramified longer 

processes, whose distribution is anisotropic (Sofroniew and Vinters 2010; Emsley and Macklis 

2006). Nowadays, this early characterization appears to be a huge oversimplification. Not only 

morphologically variations have been described among different astrocytes, which have a 

regional specificity, but astrocytes also appear to have a broad spectrum of distinctive 

electrophysiological properties, differential expression of GFAP, glutamate transporters, 

receptors, gap junction, and even robust species-specific differences, as it has been described 

between rodents and humans (Oberheim et al. 2009; Walz and Lang 1998; Matyash and 

Kettenmann 2010).  

Astrocytes are an integral component of the blood-brain barrier (BBB), as well as key to 

the formation and maintenance (Araya et al. 2008; Janzer and Raff 1987; Kuchler-Bopp et al. 

1999). Alteration of astrocyte function leads to BBB malfunction, immune cell infiltration, and 

leakage from the bloodstream (Araya et al. 2008; Faulkner et al. 2004). Structurally speaking, EM 

analysis has revealed that astrocytes associate with the blood vessels epithelia by a specialized 

process known as “astrocytic end-foot” (Fig.1) (Araya et al. 2008). Because of this close 

interaction between blood vessels and astrocytes, it is not surprising that it has been shown that 

these cells can regulate the cerebral blood flow (CBF). Interestingly, this suggests that astrocytes 

might act as vascular-neuron intermediaries, and its role is essential for coupling neuronal activity 

and the CBF to match metabolic demands to network activity (Harder, Zhang, and Gebremedhin 

2002).  

Glial cells, in general, are fundamental metabolic suppliers of neurons in physiological 

conditions. The brain requires incredible amounts of energy, and a significant fraction comes 

from the catabolism of carbohydrates, namely glucose. Among others, astrocytes have been 

shown to feed neurons by providing glucose directly (Occhipinti, Somersalo, and Calvetti 2009; 

Dringen, Gebhardt, and Hamprecht 1993) or storing it in the form of glycogen for mid-short usage 

(Cataldo and Broadwell 1986). Additionally, in anaerobic conditions (diminish or lack of oxygen), 

astrocytes produce and transport lactate, which is further metabolized by neurons as an 
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alternative source of energy (Suzuki et al. 2011; Walz and Mukerji 1988; van Hall et al. 2009; Wyss 

et al. 2011).  

In the pathologic CNS, astrocytic markers like GFAP, which upregulation is characteristic 

in activated astrocytes of the GM, has been widely used for the histological and biochemical 

analysis of nervous tissue during inflammation and damage (Sofroniew and Vinters 2010). 

Whereas holding some resemblance with the activation of microglia, astrocytes react at later 

time points than microglia after brain trauma, showing temporally regulated distinctive 

responses, such as hypertrophy, moderate proliferation, and polarization, which goes together 

with process extension towards the injury site (Bardehle et al. 2013; Simon, Gotz, and Dimou 

2011). Nonetheless, they do not show migratory behaviors towards the insult, like other glial cells 

do (Dimou and Gotz 2014; Bardehle et al. 2013). Reactive astrocytes have been shown to restrict 

damage in the CNS, helping in the scar formation, regulating inflammation and immune cells 

infiltration, and also for BBB repair (Bush et al. 1999; Araya et al. 2008; Voskuhl et al. 2009; 

Faulkner et al. 2004). Astrocytes have been also shown to participate in various 

neurodegenerative diseases, like Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple 

sclerosis (MS), and amyotrophic lateral sclerosis (ALS) (Sofroniew and Vinters 2010). 

Additionally, astrocytes maintain the brain homeostasis and serve essential functions on 

the modulation of neuronal activity. They uptake extracellular potassium (K+) mainly by inward 

rectifying channels, like Kir4.1 (Seifert et al. 2009), which mediates hyperpolarization of the 

neuronal membrane, preventing the increase of neurons excitability. Additionally, extracellular 

glutamate is uptaken from the interstitial space by the astrocytic glutamate transporters EAAT1 

& 2. This process effectively avoids the increase of tonic activation of glutamate receptors after 

its release from the presynaptic terminal, and reducing the excitotoxicity glutamate-driven  

(Rothstein et al. 1996; Tanaka et al. 1997).  

The role of astrocytes in preserving CNS homeostasis includes as well the control of pH, 

through different proton exchange-transporters and pumps, and modulates water movement by 

aquaporins (AQP), the latter allowing the flow of water by osmotic gradients (Obara, Szeliga, and 

Albrecht 2008; Simard and Nedergaard 2004). Finally, astrocytes participate in the homeostasis 
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of neurotransmitters, like glutamate and GABA, by removing them from the extracellular space, 

synthesizing their molecular precursors in a process known as the “glutamate-GABA-glutamine 

cycle,” and degradation (Norenberg and Martinez-Hernandez 1979; Zielke et al. 1998; Hertz and 

Hertz 2003; Ishibashi, Egawa, and Fukuda 2019; Hertz and Zielke 2004).  

During the CNS development, astrocytes are critical for the migration of neuronal 

precursors and the extension of their projections to their target sites within the CNS, both being 

highly regulated by environmental, cellular, and extracellular molecular cues. Astrocytes provide 

different signals, additionally to serve as substrate for axon guidance and neurites expansion 

(Banker 1980; Powell and Geller 1999; Gage, Olejniczak, and Armstrong 1988), an essential 

feature of the CNS  embryonic and postnatal development. In addition, the normal synapse 

formation, maturation, and stabilization take place under the rigorous modulation of astrocytes, 

which provides the molecular signals to the proper formation of synapses (Christopherson et al. 

2005; Ullian et al. 2001).  

In the adult brain, astrocytes have been shown to interact with 80% of neuronal synapses 

in a highly specialized structure known as the “tripartite synapse” (Fig.1) (Perea, Navarrete, and 

Araque 2009; Halassa et al. 2007). The tripartite synapse has been hypothesized to be the 

foundation of many functions that astrocytes accomplish in the CNS like glutamate uptake, CBF 

regulation, and metabolic supply of neurons, etc.  

In vitro and in vivo experiments have shown that astrocytes express multiple surface 

receptors, such as glutamatergic, GABAergic, cholinergic, dopaminergic, purinergic receptors, 

among many others (Shigetomi et al. 2008; Bowser and Khakh 2004; Kang et al. 1998; Araque et 

al. 2002; Corkrum et al. 2020; Perea, Navarrete, and Araque 2009; Hoft et al. 2014). Notably, 

astrocytes are electrically non-excitable cells. Still, their activation leads to the stereotypical 

response of an increase of their intracellular Ca+2 ([Ca+2]i), which can trigger a signaling cascade 

and evoke astrocyte responses, including the release of vesicles filled with different molecular 

signals. In analogy to neurotransmitters, these signals have been named gliotransmitters, with 

the main ones being D-serine, ATP, and glutamate (Tan et al. 2017; Beltran-Castillo et al. 2017; 

Gourine et al. 2010; Bezzi et al. 2004; Fiacco and McCarthy 2004). An outstanding feature of 
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astrocytes is that they constitute a syncitium due to the expression of connexins that couples 

adjacent astrocytes (Xing et al. 2019). The increase of [Ca+2]i in one cell leads to the activation 

and subsequent augmentation of [Ca+2]i in neighboring astrocytes, which allows the propagation 

of the so-described “calcium wave” (Oberheim et al. 2009; Fiacco and McCarthy 2004). This 

characteristic provides an extraordinary concept to the field because it suggests that astrocytes 

not solely react locally but also in a long-range. 

The release of gliotransmitters can regulate neuronal circuitries. It has been shown that 

changes in astrocytes [Ca+2]i  correlate neuronal N-methyl-D-aspartate (NMDA) receptor slow 

inward currents by a PAR-1 dependent mechanism (Shigetomi et al. 2008). In the same line, the 

manipulation of astrocytes [Ca+2]I, by an optogenetic approach, leads to the release of ATP and 

the activation of purinergic receptors, which simultaneously repress activity of pyramidal 

neurons by two mechanisms. First, by increasing the membrane hyperpolarization of pyramidal 

neurons. Second, by increasing the activity of cholecystokinin (CCK) inhibitory interneurons, a 

superb example of local circuitry modulation (Tan et al. 2017). Additionally, the activation of 

astrocytes, by hypercapnia (increase in blood carbon dioxide (CO2) concentration) or diminished 

pH, augments the firing rate of respiratory motor neurons, increasing respiratory frequency 

(Gourine et al. 2010; Beltran-Castillo et al. 2017), playing a role of interoceptors.  

Another mechanism by which  astrocytes could modulate brain plasticity is through the 

promotion of synaptic scaling by the release of TNF-α (Stellwagen and Malenka 2006), an 

arrangement in which neurons can detect changes in their firing rate through regulation of their 

receptor trafficking and scale it to the accumulation of glutamatergic receptors at synapses. 

Additionally, astrocytes can regulate neurogenesis by modulating NSCs proliferation and 

progressive maturation in vitro and in vivo models (Ashton et al. 2012; Song, Stevens, and Gage 

2002). 

To date, despite the agreement that astrocytes have a modulatory effect on neuronal 

networks, little is known concerning the contribution of astrocytes in different animal behaviors. 

A recent study reported astrocyte-dependent synaptogenesis in the striatum, modulated by 
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GABA release by neighboring neurons, which underlies behaviors including hyperactivity and 

disrupted attention (Nagai et al. 2019).  

 

 Oligodendrocytes and myelination, construction of the fast information highway 

 The oligodendrocyte lineage remains one of the most mysterious group of glial cells in 

the CNS. Like for astrocytes, the total amount of oligodendrocytes in the CNS is deceiving. It is 

estimated that the size of the population ranges from ~15 – 20% (Ero et al. 2018; Valerio-Gomes 

et al. 2018) and ~40 – 50% (Pelvig et al. 2008) of the total cell population in the mouse and 

human brain, respectively. Most oligodendrocytes arise shortly after birth, and are generated by 

the differentiation of NG2-glia, which I have a devoted section to revise these cells later in this 

introduction. Regarding the distribution of oligodendrocytes, in contrast to other glial cells, this 

is not homogenous in the CNS, being enriched in areas known as white matter (Tomassy et al. 

2014; Ero et al. 2018). 

 In the current research, it is almost impossible to talk about oligodendrocytes without 

mentioning, in some fashion, their ability to synthesize myelin in the CNS. In simple terms, myelin 

is a highly compacted multilayer that is originated by the massive production and extension of 

the cellular membrane of oligodendrocytes´ processes, which wraps around the neuronal axons 

(Fig. 2b). This biological process is known as “myelination,” (Fig. 2a) and is critical for the proper 

function of the CNS as it enables the fast conduction of action potential along the axons. Myelin 

distribution in the CNS correlates with oligodendrocyte distribution, and it is this biological 

structure that gives the “white” color in the WM due to the way light scatters because of the 

molecular composition of the myelin. Just to put on perspective, WM occupies ~44% of the total 

volume of the CNS (Laughlin and Sejnowski 2003). 

From an evolutionary perspective, fast conductivity along the axon was only possible by 

increasing the axons caliber  because it reduces the axial electrical resistance (Hartline and 

Colman 2007). Well-known examples are the giant squid axon and the axons of the Mauthner 

cells in the crayfish and goldfish. Although small and big organisms indeed show axonal gigantism, 

this anyhow limits the number of axons in relation to their size (Hartline and Colman 2007). A 
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brilliant adaptation came with the electrical insulation of axons by myelin, which was developed 

by members of the subphylum of gnathostome vertebrates and myelin-like structures by some 

species of invertebrates, such as the shrimp and copepod (Davis et al. 1999; Heuser and 

Doggenweiler 1966).The latter consist of concentric ensheathment by multiple flattened glial 

processes and mostly uncompacted sheaths (Salzer and Zalc 2016). Myelinated axons allow 

smaller caliber axons; therefore, a high number of neurons with high speed conductivity can be 

packed in an organism. More importantly, myelin accelerates conduction more efficiently than 

increasing the axon caliber (Tolhurst and Lewis 1992). Notably, within the animal kingdom, 

myelin and myelin-like structures do not have a common ancestry, but they were independently 

generated among the different taxa; thus, it represents an astonishing example of convergent 

adaptation (Hartline and Colman 2007).  

Figure 2. Myelin and myelination. a) Schematic model shows the differentiation of NG2-glia into oligodendrocyte, 
followed by the synthesis of myelin and its wrapping around axons. NG2-glia extend and retract processes until 
stabilizing contact with the axon. This event initiates the synthesis and extension of the membrane, originating the 
myelin sheath. Myelin extends laterally and radially wrapping around the axon, at the same time, voltage-gated ion 
channels cluster in the segments of the axon that are devoid of myelin, which leads to the formation of the nodes. 
Myelin transcripts like mbp are transported from the soma to the myelin sheath and locally translated, promoting 
the myelin compaction. The upper part of the illustration shows the myelin wrapping around the axon whereas the 
lower part shows the appearance of the unfolded myelin on the axon. b) Electron microscopy image of a myelin as 
a multiple periodic membrane layers (lamellae) wrapping around one axonal segment (adapted from Nave & Werner 
2014). Rerpinted by permission of Annual Reviews by Copyright Clearance Center’s Marketplace™ service. License 
number 1036331. 
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Axonal myelination has many advantages. Myelin modifies the electrical properties of 

axons by reducing the capacitance and increasing the resistance of the axonal membrane. 

Furthermore, myelin sheaths do not cover the entire axon, but they are absent in short segments 

known as nodes of Ranvier. Within these nodes, sodium voltage-gated sodium channels (Nav) are 

densely packed, necessary for the local regeneration of action potentials (Nave and Werner 2014) 

triggered by depolarization propagated electrotonically from the previous node. Therefore, this 

particular arrangement of myelin along axons provides the structural basis for the saltatory 

conduction (Nave and Werner 2014).  

As an additional function, it has been postulated that myelin reduces the metabolic cost 

of neuronal activity. It has been shown that WM has reduced consumption of glucose in 

comparison to the GM (Sokoloff et al. 1977), in part because myelination minimizes the need for 

ATP-dependent Na+/K+ exchange, to bring back axonal membranes to their resting potential 

(Wang et al. 2008; Nave and Werner 2014). Nevertheless, it should be considered that the high 

energy cost of biogenesis and further development of myelin is not pay-back by the saving in 

membrane potential restoration (Harris and Attwell 2012). In fact, it is calculated that the 

reduced energetic consumption in the WM is not largely due to long-term compensation but 

rather due to little metabolic spending because of its diminished synaptic activity (Harris and 

Attwell 2012; Sokoloff et al. 1977).  

In mammals, two cell types have the unique ability to synthesize myelin. SCs in the PNS 

and oligodendrocytes in the CNS. Despite that both can myelinate axons, they differ enormously 

in their ontogeny (neural crest and neural plate, respectively), their protein composition, the 

number of myelinated axonal segments (known as “internodes”) per cell (the ratio internode to 

myelinating cell is 1:1 in SCs and up to 60:1 in oligodendrocytes), the myelin wrap periodicity 

(17nm versus 15.5nm, respectively), and  substructural differences within the myelin (Nave and 

Werner 2014). Thus, apparent structural and functional similarity of PNS and CNS myelin is a 

superb example of convergent cellular evolution within the nervous system. 

Myelin is a poorly hydrated structure composed of a mere ~40% of water against ~80% 

in other brain cellular components (Watanabe, Frahm, and Michaelis 2016). It is highly enriched 
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in lipids, which constitutes up to ~70 – 80% in dry weight (Simons and Nave 2015). Several 

proteins promote the formation, compaction, assembly, and stability of myelin in the CNS, e.g., 

proteolipid protein (PLP), myelin basic protein (MBP), cyclic nucleotide phosphodiesterase 

(CNPase), myelin oligodendrocyte glycoprotein (MOG), myelin-associated glycoprotein (MAG), 

among others (Nave and Werner 2014). The composition of myelin has provided formidable time 

stability that has even surpassed researchers' expectations as verified after analyzing myelin 

samples from the “Tyrolean Ice Man,” who has been dead and preserved in freezing 

temperatures for over 5000 years (Hess et al. 1998). 

The cellular mechanisms that govern myelination (Fig. 2a) seem to be influenced by the 

axon caliber since most thick axons are myelinated (Nave and Werner 2014). After birth, shortly 

after stabilizing contact with the axon, an oligodendrocyte membrane grows in an impressive 

rate of 5000µm2
 per day, requiring around ~105 myelin proteins and other molecules per minute 

(Pfeiffer, Warrington, and Bansal 1993), by a steady production and trafficking of lipids from the 

cell body towards the contact point to form the myelin sheath. In a fascinating study done in 

zebrafish larvae, it has been shown that with increasing size, the membrane starts to expand 

radially, and the leading edge of the membrane squeezes in between the preceding layer and the 

axon, a process commonly named as “wrapping.” Simultaneously, myelin sheath expands 

longitudinally (always in contact with the axon surface), a process that leads to the establishment 

of the internodes and nodes (Snaidero et al. 2014). Finally, the myelin membrane wraps several 

times around the axon, the membrane trafficking is terminated, and the mRNA for proteins, like 

MBP, are transported to the myelin sheaths (Colman et al. 1982), promoting compaction and 

further maturation of the myelin sheaths (Aggarwal et al. 2013). 

 In the past decade, new evidence has suggested that oligodendrocytes provide trophic 

and metabolic support to axons. Deletion of myelin proteins, such as  PLP and CNPase, leads to 

progressive axonal pathology, such as swellings, axonal degeneration, reduction of axonal 

calibers, and premature dead (Lappe-Siefke et al. 2003; Klugmann et al. 1997). Furthermore, 

oligodendrocytes supply axons with lactate, resembling the function of the lactate-shuffle in 

astrocytes. It has been demonstrated that the deletion of the COX10 gene in oligodendrocytes, 

which is essential for the assembly of the electron transport chain in mitochondria, enhances 
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their glycolysis. Thereby, oligodendrocytes increase their production of lactate, which, in turn, 

axons can use as an alternative energy source (Funfschilling et al. 2012). Conversely, the deletion 

or pharmacological blockade of the monocarboxylate transporter 1 (MCT1), which is solely 

expressed by oligodendrocytes and allows the transport of lactate into neurons, leads to axonal 

degeneration (Lee, Morrison, et al. 2012). This metabolic dependency could be due to the 

physical restrictions that myelin imposes onto axons to uptake extracellular energy resources. 

Finally, only recently, the function of K+ buffering and homeostasis has been attributed to 

oligodendrocyte (Larson et al. 2018). 

 Myelination is fundamental for the proper information processing in the CNS because it 

is essential for the propagation and fast conduction of action potential. It has been shown that 

abnormal myelination or loss of myelin impoverish motor performance in myelin protein-related 

mutant animals (Lappe-Siefke et al. 2003; Klugmann et al. 1997). Nonetheless, it could be argued 

that the problems lie on the degeneration of axons due to lack of metabolic support and not 

directly in the loss of myelin. Albeit, this theory loses weight in mutants that, at young ages, 

exhibit mild alterations in myelin, slower propagation of action potentials in the spinal cord, and 

do not present axonal degeneration. Interestingly, altered behaviors have been also reported, as 

a deficit in prepulse inhibition of startle response, decreased working and spatial memory, and 

increased anxiety-like behavior (Tanaka et al. 2009). Additionally, mild myelin disruption results 

in deficiencies in associative motor learning in mice, which is improved by artificial stimulation of 

the affected neurons (Kato et al. 2020). 

 Oligodendrocytes are fundamental to understand production of myelin and their impact 

on conduction velocity. Nonetheless, to fully understand myelin plasticity in development and 

adulthood, it is crucial to revise the cells that generate the oligodendrocytes, the NG2-glia. 

     

NG2-glia, the enigmatic new glial population 

  Oligodendrocytes develop exclusively from a progenitor cell population during late 

gestational and early postnatal life, known as NG2-glia (Miller 1996), which have earned the title 

of being the fourth major group of glial cells in the CNS (Dimou and Gallo 2015; Eugenin-von 



Introduction 

25 
 

Bernhardi and Dimou 2016). The name NG2-glia derives from the presence of the chondroitin 

sulfate proteoglycan (CSPG) neuron/glia antigen 2 (NG2) on their cell surface (Dimou and Gotz 

2014). To distinguish these from pericytes of the CNS, which also express NG2 (Ozerdem et al. 

2001), I prefer to use the term NG2-glia instead of only NG2+ cells. NG2-glia can also be found 

with many different names in the literature. The most often used name oligodendrocyte 

progenitor cells (OPCs) because their first identified function was the generation and 

maintenance of the oligodendrocyte population under physiological and pathological conditions. 

Some of them have been less successful in sticking in the field,  such as “polydendrocytes” 

(Nishiyama, Suzuki, and Zhu 2014), because of their multi-branched and radial morphology, and 

“synaptocytes” (Xu, Wang, and Zhou 2014), due to their ability to form synapses with neurons. 

 

NG2-glia: Solely oligodendrocyte progenitor cells or neural stem cell-like progenitor 

cells? 

To restrict NG2-glia to be just oligodendrocyte progenitors is inadequate and a misleading 

concept. The progeny perspective is non-factual because they show neural stem-like properties 

to a certain extent (Fig. 3). 

First, NG2-glia proliferate and self-renew their population in the adult brain, representing 

the primary proliferative cell population (Psachoulia et al. 2009; Simon, Gotz, and Dimou 2011; 

Dimou and Gotz 2014; Young et al. 2013) outside the neurogenic niches (see above). Second, 

under physiological conditions, they do not differentiate only into oligodendrocytes. In vitro and 

in vivo fate mapping experiments demonstrated that NG2-glia could also give rise to a specific 

population of astrocytes in the ventrolateral forebrain, striatum, thalamus, and hypothalamus 

during development (Raff, Miller, and Noble 1983; Zhu, Bergles, and Nishiyama 2008; Huang et 

al. 2014) and after injury (Alonso 2005; Komitova et al. 2011). A fact suggesting that NG2-glia are 

not confined to the oligodendrocyte lineage.  

An objection to coin them as “neural-stem cell-like” is that they lack multipotency because 

there is no substantial evidence that they generate neurons. Although NG2-glia have the 

potential to differentiate into neurons in the adult brain within restricted areas, such as the  
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Figure 3. Multiple cell fates of NG2-glia. NG2-glia have the capability to proliferate and differentiate into 
oligodendrocytes in the immature and mature brain. However, NG2-glia can also differentiate into 
astrocytes in the ventrolateral forebrain, striatum, thalamus, and hypothalamus during development. 
Additionally, some studies have suggested that, in adulthood, NG2-glia could also differentiate into 
neurons, although it remains unclear (adapted from Eugenin-von Bernhardi & Dimou et al. 2016). Figure 
has been repurposed by the author and reprinted permission has been granted by Springer Nature by 
Copyright Clearance Center’s RightsLink® service. License number 4831841077546. 

 

piriform cortex and the hypothalamus (Guo et al. 2010; Robins et al. 2013; Rivers et al. 2008), the 

latter being a more convincing study, the neuronal progeny of NG2-glia remains unclear as these 

results failed to replicate in several other mouse models of fate mapping NG2-glia in the adult 

(Dimou et al. 2008; Kang et al. 2010; Clarke et al. 2012; Zhu et al. 2011) or embryonic brain (Huang 

et al. 2019). Therefore, it appears unlikely that NG2-glia have a robust neurogenic potential under 

physiological conditions.  

On the other hand, the pure “oligodendrocyte progenitor” notion of NG2-glia also 

undermines their functionality. NG2-glia represent around 5 - 10% of the total cells in the adult 

brain, and they are evenly and widely distributed along the GM and WM of the brain and the 

spinal cord (Dawson et al. 2003). Histological and in vivo imaging analysis has determined that 

neither NG2-glia processes nor cell bodies overlap significantly, similarly to protoplasmic 
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astrocytes (Wigley et al. 2007; Bushong et al. 2002; Hughes et al. 2013). It is curious that this 

distribution remains in adulthood, despite that the peak of myelin development already took 

place at ~P14 (Wright et al. 2010) in mice and during the first year in humans (Snaidero and 

Simons 2014), culminating at P60 (Wright et al. 2010) and during young adulthood (Snaidero and 

Simons 2014), respectively.  Moreover, there is vast evidence indicating that NG2-glia can 

proliferate and differentiate into mature oligodendrocytes throughout life, although both their 

proliferation and differentiation rates depend on the area and decrease with age (Kang et al. 

2010; Zhu et al. 2011; Dimou et al. 2008; Young et al. 2013; Dawson et al. 2003; Hughes et al. 

2013). Despite proliferation, differentiation, and cell death, the NG2-glia population remains 

constant during lifetime (Hughes et al. 2013; Schneider et al. 2016). How is this possible? 

It has been reported in the healthy brain that NG2-glia have mechanisms that are 

independent of external molecular signals to maintain their population. In a study made in vivo 

by time-lapse two-photon imaging, it was shown that they can proliferate and migrate short 

distances within the intact brain parenchyma in a process that is highly regulated by self-

repulsion among NG2-glia processes (Hughes et al. 2013). Moreover, it has been described in the 

mammalian and zebrafish CNS that when a NG2-glia differentiates, dies or is ablated by focal 

laser, neighboring NG2-glia are triggered to proliferate and migrate into the vacant space to 

restore the network and keep constant the size of the population (Kirby et al. 2006; Hughes et al. 

2013; Birey and Aguirre 2015). Another possible mechanism to keep the NG2-glia population 

stable was shown by a WM lesion study. In this research, it has been shown that NG2-glia hold 

the capacity to divide asymmetrically, originating simultaneously one NG2-glia and one 

oligodendrocyte. This mechanism allows the generation of differentiated cells without altering 

the number of NG2-glia (Hill et al. 2014), which is  another common feature shared between 

NG2-glia and neural stem cells (Kriegstein and Alvarez-Buylla 2009).  

Thus, gathered evidence suggests that the generation of oligodendrocytes is one of the 

probably further functions of NG2-glia in the healthy CNS. The constant population size and the 

capability to proliferate and differentiate through life give the impression that NG2-glia might 

have additional functions. In the pursue of these answers, scientists have adventured in the 

heterogeneity of these cells.   
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NG2-glia heterogeneity, are all NG2-glia born equally? 

The high diversity of other glial cells, like astrocytes, lead to the suggestion whether NG2-

glia represents a homogenous population or whether there is a spectrum of different types within 

the CNS. Emerging evidence points out that, indeed, the latter might be the case.  

During mice development, NG2-glia come in three independent “waves” (Fig. 4). In mice, 

they are generated at E11.5 from the medial ganglionic eminence, followed by a group originated 

from the lateral ganglionic eminence at E15 and finally developed from the cortical SVZ at P0 

(Kessaris et al. 2006). Initially, the three-wave nature of NG2-glia ontogeny suggested that these 

cells might also have different characteristics and functions in the CNS given that each wave arise 

from a different niche with a particular expression of transcription factors (Kessaris et al. 2006). 

Nonetheless, this idea has some inherent weaknesses. Firstly, under physiological conditions, the 

first wave naturally extinguishes in the CNS and is rapidly replaced by the other two waves 

(Kessaris et al. 2006). Secondly, and more relevant, the ablation of one wave of NG2-glia is quickly 

replaced by the other wave (Kessaris et al. 2006). Thus, it seems that NG2-glia are intrinsically 

redundant during development and this mechanism ensures the generation of oligodendrocytes  

Figure 4. Oligodendrocyte progenitor cells (OPCs) waves during development. 1) The first wave of OPCs 
(red) are originated from the medial ganglionic eminence (MGE) at E11.5 and they are characterized by 
expressing the transcription factor NK2 Homeobox 1 (Nkx2.1). The second wave of OPCs (blue) is 
generated at E15 from the lateral ganglionic eminence (LGE) expressing the GS Homeobox 2 (GSH2) and 
spreading all over the brain. 3) Finally, at P0, a third wave of OPCs (green) expressing the transcription 
factor Homeobox protein Emx1 are originated from the ventricular zone. Both second and third wave 
persist in adulthood whereas the first wave disappears (adapted from Kessaris et al. 2006). Reprinted by 
permission of Springer Nature by Copyright Clearance Center’s RightsLink® service. License number 
4833180838409. 
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and progressive myelination would not be impaired during development, albeit it has not been 

shown whether have consequences in the adult mice after ablation of any of the waves during 

development. 

Nonetheless, analysis of different areas in the adult brain has confirmed that the 

heterogeneous nature of NG2-glia resides in their morphology, differentiation and proliferation 

behavior, their electrophysiological properties, and response to signals.  

For instance, WM NG2-glia in the adult corpus callosum (CC) has higher proliferation and 

differentiation rates than their GM counterparts (Dimou et al. 2008; Vigano et al. 2013; Young et 

al. 2013). Indeed, when experiments were approached with homo- and heterotopic 

transplantations of NG2-glia (cells are taken from one adult animal and injected into the same or 

different area of another adult animal) has revealed that these diverse differentiation properties 

between white and gray matter NG2-glia are the result of mainly intrinsic properties between 

these cells (Vigano et al. 2013). Although, transplanted GM cells transplanted into the WM were 

able to differentiate into oligodendrocyte, they did not become myelinating cells (Vigano et al. 

2013). Therefore, the combination of intrinsic and extrinsic factors may control the 

differentiation and maturation of the oligodendrocyte lineage.  

Additionally, when morphology and process distribution show differences between NG2-

glia from different regions, i.e., cortical NG2-glia present a radial and isotropic process 

distribution, in contrast to the ones in the CC, which have an anisotropic distribution of processes 

and organize in parallel to axons (Young et al. 2013; Vigano et al. 2013). NG2-glia in the WM and 

GM have also been described to be different regarding their cell cycle length. Even though all 

NG2-glia can divide, GM cells have a longer cell cycle than WM ones (Young et al. 2013; 

Psachoulia et al. 2009; Dimou et al. 2008). Their response to extracellular signals is also variable. 

For example, NG2-glia in the WM show a more robust proliferative response to platelet-derived 

growth factor (PDGF) than in the GM; regardless that both populations express comparable levels 

of the PDGFRα (Hill et al. 2013).  

Interestingly, in the last years, NG2-glia heterogeneity has been suggested not only 

between different regions but also within the very same brain area. There is differential 



Introduction 

30 
 

expression of proteins solely in subsets of NG2-glia located in the same region. For example, in 

the cortical GM, only ~50% of NG2-glia express the transcription factor achaete-scute homolog 

1/mammalian achaete-scute homolog 1 (Ascl1/Mash1), an essential factor for neuronal fate 

determination (Parras et al. 2007). In the same line, only a subset of the population of 

hippocampal NG2-glia expresses the “turned on after differentiation 64Kd” (TOAD-64), which is 

shown in neurons during early development (Belachew et al. 2003). However, it has not been 

possible to assign any distinctive function to these cell populations. 

 From an electrophysiological point of view, NG2-glia express Navs  sensitive to TTX 

(Karadottir et al. 2008; De Biase, Nishiyama, and Bergles 2010), voltage-gated potassium 

channels (Kvs), and, on their processes, high voltage-gated calcium channels (Cavs), which are 

downregulated during their differentiation (Verkhratsky and Steinhauser 2000). This broad 

expression of voltage-gated channels in NG2-glia suggests that they may have dynamic electrical 

properties. Nonetheless, the electrophysiological properties of NG2-glia have been described to 

be very variable among the population (Chittajallu, Aguirre, and Gallo 2004; Karadottir et al. 

2008; Clarke et al. 2012), and these features vary during different developmental stages in the 

mouse (Clarke et al. 2012). Thus, theoretically, NG2-glia have all the components needed to 

generate and propagate action potentials. Notably, GM but not WM NG2-glia showed spiking 

electrical characteristics (Chittajallu, Aguirre, and Gallo 2004). Additionally, WM NG2-glia in the 

rat has revealed the existence of spiking and non-spiking NG2-glia  (Karadottir et al. 2008). 

However, data on spiking NG2-glia have been mixed. Some researchers have confirmed their 

existence (Berret et al. 2017; Karadottir et al. 2008; Chittajallu, Aguirre, and Gallo 2004) whereas 

others have not reported them (Bergles et al. 2000; Karadottir et al. 2008; De Biase, Nishiyama, 

and Bergles 2010; Clarke et al. 2012). These differences may suggest that electrophysiological 

features could be specific for NG2-glia in particular species or during certain developmental 

stages or both (Clarke et al. 2012).  

The recent discovery of the subpopulation of NG2-glia expressing the G-protein coupled 

receptor 17 (GPR17), a P2Y-like receptor, has supported heterogenic functionality within NG2-

glia (Chen et al. 2009; Boda et al. 2011; Vigano et al. 2016).   The number of GPR17+ NG2-glia 

increases during development and then decreases to a baseline that remains constant in the 
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juvenile and adult mice (Chen et al. 2009; Boda et al. 2011). Notably, the dynamics of GPR17+ 

NG2-glia seem to correlate with the dynamics of myelination, both increasing in parallel and 

reaching a peak around P14.  In the same line, the deletion of GPR17 in mice leads to premature 

myelination during development (Chen et al. 2009). Additionally, in adult mice, GPR17+ NG2-glia 

differentiate very slow in the intact brain in comparison to their GPR17- NG2-glia counterparts 

(Vigano et al. 2016). However, after sizeable cerebral damage, they proliferate (Boda et al. 2011; 

Lecca et al. 2008), and undergo rapidly differentiation, suggesting a role as a “reserve pool” of 

adult progenitors that are maintained for repair processes (Vigano et al. 2016), which still needs 

to be determined. Because of the importance of this NG2-glia population for my thesis, I will 

come back later to discuss their role in the brain. 

Until now, the evidence presented raises important questions regarding the nature of 

NG2-glia in the adult brain. Why are NG2-glia widely spread in the CNS after the completion of 

oligodendrogenesis and developmental myelination? And, why is the distribution even in less 

myelinated areas as well as in highly myelinated regions? Why is the population size constant, 

and is this accomplished by some sort of homeostatic control? More importantly, is there a 

strategic need for NG2-glia to retain the capabilities of proliferation and differentiation in the 

adult brain? Does NG2-glia heterogeneity play a role? Imagination flies around these questions, 

and finding answers seems determinant for understanding the fascinating complexity of our CNS. 

In this thesis, three non-mutually exclusive potential roles have been recapitulated, although the 

focus will be set on the third one. 

 

Role 1 - Restoring myelin in the CNS 

 Myelin or oligodendrocytes may lose stability with age, which may affect the integrity of 

myelin sheaths or the health status of oligodendrocytes. Both would lead to a huge detrimental 

effect on conduction speed, hence, aberrant information processing. In humans, magnetic 

resonance imaging (MRI) studies have shown that the WM size decreases with age, affecting 

more females than males (Guttmann et al. 1998). To support this evidence, MRI and histological 

studies have shown that the aged rhesus monkey has the same pattern of size declination of the 
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WM and EM revealed that myelin loses its integrity (Wisco et al. 2008; Peters et al. 1996; Peters 

1996). Furthermore, aged oligodendrocytes show swelling and an increased number of inclusions 

in their processes (Peters 1996), which suggests that aging affects cell viability. Notably, although 

less frequently, those aberrations can be found in young rhesus monkeys as well (Peters 1996), 

indicating that either the number of inclusions increases or the repair mechanisms fail with age.  

In murine models, it has been shown that internodes shorten  during aging (Lasiene et al. 

2009). Nonetheless, to our knowledge, no clear relation between either oligodendrocyte swelling 

or inclusion to internode shortening has been established yet. Interestingly, newly generated 

oligodendrocytes in older mice display shortened internodes (Young et al. 2013). Therefore, it 

could be suggested that oligodendrocytes' show senescence changes while aging, leading to 

internode shortening. The exposed axon might be sensed by NG2-glia that then sequentially 

differentiates into an oligodendrocyte.  

It has been shown that genetically block of NG2-glia differentiation leads to increased 

nodes and paranodes size, reduced speed conductivity in the CC, and impaired motor behavior 

(Schneider et al. 2016), reinforcing the notion that oligodendrocyte turnover is necessary during 

the whole lifespan of an organism.  

 

Role 2- Surveillance, reaction, and repair 

The overall distribution of NG2-glia might reflect their function. As microglia and 

astrocytes, it is conceivable that these progenitors might have a role in overseeing the CNS 

reaction against any insult or damage caused by trauma or other pathologies. Moreover, it has 

been described states of different “reactive NG2-glia” exist in different models of injury and 

demyelination. In hypomyelination, mutant mice, such as the jimpy (mutation in Plp) or the 

shiverer (mutation in MBP) mouse lines, display increased proliferation and differentiation of 

NG2-glia in the spinal cord WM (Wu et al. 2000; Bu et al. 2004). Notably, the transplantation of 

healthy human NG2-glia into the shiverer mouse improves CNS remyelination (Windrem et al. 

2008).  Additionally, acute lesions of the WM with α-lysophosphatidylcholine (LPC) toxin or by 

experimental autoimmune encephalomyelitis (EAE), commonly used for multiple sclerosis (MS) 
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studies, result in increased proliferation of NG2-glia and their differentiation into myelinating 

oligodendrocytes within the lesion (Garay et al. 2011; Hill et al. 2014; Gensert and Goldman 1997; 

Keirstead, Levine, and Blakemore 1998; Di Bello et al. 1999).  

The role of NG2-glia during demyelination and the subsequent remyelination appears to 

be clear. It is possible that the decrease in myelin, somehow detected, triggers the proliferation 

and differentiation of NG2-glia in order to recover the loss of myelin, making NG2-glia a prime 

target for regenerative therapy in MS. However, the picture is not so clear in human. Postmortem 

analyses of MS patients have revealed that NG2-glia are more abundant in areas where WM is 

undergoing active inflammatory demyelination, and commonly remyelination occurs, than in 

chronic lesions (Wilson, Scolding, and Raine 2006). This evidence suggests that NG2-glia are 

restricted in the long-term pathology, probably due to a hostile environment or exhaustion of 

the NG2-glia able to differentiate. Remarkably, recent studies in MS patients suggest that 

proliferation and generation of newly generated oligodendrocytes are uncommon, and 

remyelination might be due to subtypes of oligodendrocytes that can remyelinate WM injuries 

rather than repopulation with newly generated oligodendrocytes (Yeung et al. 2019; Jakel et al. 

2019). Nonetheless, this topic is far from settled. 

In contrast to demyelination, the role of these NG2-glia in other brain insults like acute 

injury and neurodegeneration is not clear yet. Similarly, to astrocytes and microglia, traumatic 

brain injuries shown to increase the expression of the NG2 proteoglycan and proliferation, to 

promote cell body hypertrophy together with process shortening and thickening, migration, and 

polarization towards the injury site by losing their homeostatic control of the population (Dimou 

and Gotz 2014; Simon, Gotz, and Dimou 2011; Hughes et al. 2013). As discussed above, the 

GPR17+ NG2-glia that rapidly differentiate after brain injuries. GPR17 is a receptor for uracil 

nucleotides and cysteine leukotrienes, Cysteinyl leukotriene receptor 1 (cysLTs) (i.e., UDP-

glucose and LTD4), as well as for purines such as ATP (Lecca et al. 2008). Endogenous ligands are 

secreted after brain injury, suggesting that GPR17 may play the role of damage sensor (Lecca et 

al. 2008). As already described, GPR17+ NG2-glia increase their proliferation and differentiation 

after stab wound or ischemia (Lecca et al. 2008; Boda et al. 2011; Vigano et al. 2016). NG2-glia 

together with microglia are known to be the first cells to react to the insult (Simon, Gotz, and 
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Dimou 2011). Therefore, it is speculated that NG2-glia may participate in the initiation of wound 

closure, scar formation, and may orchestrate the activation and function of other cells after 

injury, although it remains still unclear. 

The role of NG2-glia in neurodegenerative diseases is also yet unknown. In the model of 

amyotrophic lateral sclerosis (ALS) in which mice carry a mutation in the superoxide dismutase 

(SOD) gene, there is an increase in the proliferation and differentiation of NG2-glia. However, 

newly generated oligodendrocytes do not mature and fail to myelinate (Kang et al. 2013). 

Furthermore, in the model of APPPS1 mice, a mouse model for AD, NG2-glia respond with 

increased proliferation and differentiation (Behrendt et al. 2013) and become hypertrophic in 

the GM cerebral cortex (Sirko et al. 2013). It has been described that NG2-glia cluster around the 

amyloid plaques and, as already suggested for other glial cells, they can engulf the β-amyloid (Aβ) 

indicating a clearing role (Li et al. 2013). Nevertheless, this has not been reported by other groups 

(Sirko et al. 2013). 

 

Role 3 – Adaptive myelination, a new form of CNS plasticity 

In the past, despite the powerful techniques to study myelin, such as EM and 

immunofluorescence, their steady nature of these results gave the wrong impression that myelin 

was a static structure and that once myelination is completed, myelin patterns did not suffer 

significant changes during the lifespan of the individual. Currently, two types of myelination have 

been distinguished. “Intrinsic” or, as I prefer to call it, “developmental myelination,” consisting 

of the baseline and programmed blue plan of myelin generation and distribution in the nervous 

system (Bechler, Swire, and Ffrench-Constant 2018). As a counterpart, “adaptive myelination” is 

the production of additional myelin that can be modulated through an experience-dependent 

fashion and that by itself modulate neural circuits (Bechler, Swire, and Ffrench-Constant 2018).  

In this context, the term “experience” is used ambiguously. For this thesis, I defined it as 

“external or internal effects, or influences of events on an individual that are gained through 

involvement or exposure in a short or long-term to those effects or events.” In the nervous 

system, experience can generate fast and transient or long-lasting changes in neuronal activity, 
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which in turn have significant effects on the oligodendrocyte lineage. Therefore, it is believed 

that changes in the myelin pattern and regulation of myelination are essential events for the 

integration of experiences in the CNS. Such changes are translated into the alteration in cognitive 

processes, e.g., such as learning and memory. Because of the critical relevance for this doctoral 

thesis, the topic of adaptive myelination and how NG2-glia may play a role in it will be revised in 

more detail. 

In the first place, it is fundamental to highlight that there is no area of the CNS that is 

completely myelinated in adulthood, perhaps except for the optic nerve. First of all, in WM 

structures, such as the CC, not more than 40% of the axons are myelinated in the adult mouse 

(Sturrock 1976). Moreover, it has been shown that myelinated axons, like the ones from neurons 

in the layer II-III of the somatosensory cortex, are not fully myelinated along their length. Instead, 

they instead display different patterns of internodes distributed along the axon, leaving myelin 

devoid segments (Tomassy et al. 2014). Therefore, unmyelinated axons or their exposed sections 

represent perfect substrate for myelination to occur, leading to changes in the electrical 

properties of neurons and the circuits in which they are involved.  

The inhibition of action potentials with TTX, Navs blocker, leads to a decrease myelination 

in the mouse optic nerve (Demerens et al. 1996). Conversely, the application of α-scorpion toxin 

(αScTX), which delays the inactivation of Navs, or stimulation of neurons with an electrode, 

enhance myelination of axons in mixed oligodendrocyte-neuronal cultures (Demerens et al. 

1996; Gary et al. 2012). Although the phenomenon was interesting, adaptive myelination did not 

gain attention until the first human experiments years later appeared. It could be namely shown 

by diffusion tensor imaging (DTI) that participants who learned and practiced complex visual-

motor tasks, such as juggling or extensive piano playing for weeks, exhibited increased WM size, 

suggesting an increase in the amount of myelin in this structure (Bengtsson et al. 2005; Scholz et 

al. 2009). Later on, it could be shown in rodents that social deprivation of juvenile mice led to 

impaired myelination in the prefrontal cortex (PFC), an area which has been associated with 

complex emotional and cognitive behavior (Liu et al. 2012; Makinodan et al. 2012). Moreover, it 

has been shown that optogenetic and pharmacogenetic stimulation of neurons in adult mice led 
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to increased myelination of the axonal tracts in which neuronal activity was enhanced (Gibson et 

al. 2014; Mitew et al. 2018; Geraghty et al. 2019).  

Interestingly, adaptive myelination does not apply uniquely to mammals but shares an 

evolutionary trait with other vertebrates. It could be shown in the zebrafish larvae spinal cord 

that neuronal activity not only enhanced myelination but in addition provides a signal bias for 

which axons should be myelinated (Hines et al. 2015; Mensch et al. 2015). With time-lapse in vivo 

imaging, it was shown that whereas the first axonal myelin wrapping is axon activity-

independent, the stabilization and the longitudinal expansion of prospective myelin sheaths are 

activity-dependent mediated by the secretion of axonal neurotransmitters and neurotrophic 

factors as in the mouse (Hines et al. 2015). In contrast, blocking the synaptic vesicle release with 

tetanus neurotoxin (TeNT) decreases the number of myelinated axons and the total number of 

myelin sheaths per oligodendrocyte in the zebrafish spinal cord (Mensch et al. 2015). This body 

of studies has provided the first insights that neuronal activity modulates myelination during 

development and in adulthood. The current state of the art points out that neuronal activity 

could potentially modulate the behavior of NG2-glia, enhancing differentiation into newly 

generated oligodendrocytes, which in turn provide the axons with new myelin (Fig. 5). Hence, it 

is critical to understand how neuronal activity and experience might influence NG2-glia in the 

healthy CNS. 

 

NG2-glia behavior and dynamics modulated by neuronal activity 

Early work showed that intraocular injection of TTX diminished the proliferation of NG2-

glia close to axons of the retinal ganglion cells by preventing the neuronal activity-dependent 

release of mitogens (Barres and Raff 1993). Additionally, in vivo studies have shown that high-

frequency electrical stimulation applied in the rat medullary pyramids increased the proliferation 

and differentiation of NG2-glia adjoined to the neurons of the contralateral dorsal corticospinal 

tract (Li et al. 2010). However, this experimental approach required the implantation of 

electrodes, generating unavoidably an injury. As I discussed earlier, NG2-glia react to mechanical 
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insults; thereby, this study presents critical confounding factors to dissect the association 

between NG2-glia and neuronal activity.  

Since then, new strategies have been developed in the last decade to study NG2-glia 

plasticity. One way has been to study the behavior of NG2-glia in vivo in the absence of neuronal 

activity in sensory deprivation models. The removal and cauterization of whiskers led to an 

aberrant distribution of NG2-glia in the barrel cortex together with increased proliferation in 

regions of the barrel that were devoid of NG2-glia (Mangin et al. 2012). However, in another 

study, trimming of the whiskers led to a decrease in the total number of oligodendrocytes by 

promoting apoptosis of newly generated oligodendrocytes in the somatosensory cortex (Hill et 

al. 2014). In contrast, sensory stimulation of whiskers resulted in increased differentiation of 

NG2-glia in the same cortical region (Hughes et al. 2018). These results suggest that neuronal 

input is not only important to regulate NG2-glia proliferation and differentiation, but also to 

enforce distribution and provide survival cues for oligodendrocytes.  

The development of new technologies also offered innovative approaches to modulate in 

vivo the behavior of NG2-glia by neuronal activity, such as optogenetics and pharmacogenetics, 

it has been possible to modulate their firing rate by minimizing the mechanical disturbance of 

the system. Through these techniques, it was shown that increasing the firing rate of neurons led 

to the increase of NG2-glia proliferation and differentiation adjoining the stimulated neurons 

(Gibson et al. 2014; Mitew et al. 2018). Moreover, these newly generated oligodendrocytes 

myelinate the stimulated axons (Mitew et al. 2018) that further led to an improvement in the 

behavioral-motor function of stimulated animals (Gibson et al. 2014). 

It remains unclear which are the mechanisms and the signals that neurons employ to 

communicate with NG2-glia. In the following section, I will show different molecules that might 

contribute to this crosstalk. Additionally, I will review one of the most outstanding structural 

features that neurons and NG2-glia share: the neuron-NG2-glia synapse. 
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Figure 5. Effect of neuronal activity on NG2-glia behavior. In response to a neuronal activity (1), neurons could 
release signals secreted from the axon or the soma; or secreted into the synaptic cleft formed between neurons and 
NG2-glia (2). These signals could manipulate NG2-glia proliferation (3) or differentiation into oligodendrocytes (4). 
It is also possible that e after proliferation the newborn NG2-glia differentiate (5). If new oligodendrocytes are 
generated, they could potentially myelinate surrounding axons (6) and change the electrical properties of neurons 
and therefore modify the properties of the neuronal network (7) (adapted from Eugenin-von Bernhardi & Dimou et 
al. 2016). Figure has been repurposed by the author and reprinted permission has been granted by Springer Nature 
by Copyright Clearance Center’s RightsLink® service. License number 4831841077546. 

 

Talking to NG2-glia through signals and neuron-NG2-glia synapses 

Most of the cited studies agreed that neuronal signals affecting NG2-glia must be released 

in an activity-dependent matter. Therefore, it became apparent to think that neurotransmitters 

may play a role in this communication. Experiments in organotypic cultures of cerebellum slices 

have shown that the exposition to glutamate receptor agonists, like kainate and α-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), decreased NG2-glia proliferation (Yuan et 
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al. 1998). Contrary, the administration of the antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) 

led to an increase in cell proliferation (Yuan et al. 1998). Additionally, it has been shown that 

glutamate increases [Ca+2]i in NG2-glia (Hamilton et al. 2010); thus, reflecting that 

neurotransmitters might have the capacity of triggering signal cascades in NG2-glia. 

Notably, the expression of receptors in NG2-glia is not limited to just glutamate receptors, 

such as N-methyl-D-aspartate receptor (NMDAR, (Dzamba, Honsa, and Anderova 2013)) and 

AMPAR, but it extends to a broad spectrum of neurotransmitter receptors, e.g., acetylcholine 

receptors (De Angelis et al. 2012), γ-aminobutyric acid receptors (GABAAR) (Von Blankenfeld, 

Trotter, and Kettenmann 1991; Williamson et al. 1998), purinergic receptors (Stevens et al. 2002) 

and others. Several neurotransmitters have shown a variety of effects on NG2-glia migration, 

proliferation, and differentiation, but information has been often contradictory. For instance, as 

described above in ex vivo organotypic cultures, glutamate decreases NG2-glia proliferation 

(Yuan et al. 1998). Nonetheless, in a model in which AMPA receptors have been modified in three 

different ways, glutamate was inconsistent affecting NG2-glia self-renewal, differentiation, and 

survival of newly generated oligodendrocytes depending on the modification of the receptor 

(Kougioumtzidou et al. 2017). Additionally, it has been shown that the responsiveness of NG2-

glia towards glutamate is also dependent on molecular switches like BDNF / neuregulin 

(Lundgaard et al. 2013). This evidence suggests that single neurotransmitters might trigger 

multiple responses in NG2-glia, depending on the modification of their respective receptors or 

co-signals. 

The way these neurotransmitters are presented to NG2-glia is, indeed, still a matter of 

debate. Unarguably, the discovery of “true synapses” between neurons and NG2-glia had a 

profound impact on the field. Initially described in the mouse hippocampus, it showed that the 

stimulation of neurons located in the CA3 region of the hippocampus triggered an evoked 

excitatory postsynaptic current (EPSC) in NG2-glia located in the CA1 area (Bergles et al. 2000). 

Additionally, EM studies revealed that synapses are formed between NG2-glia and unmyelinated 

axons (or at least in segments devoid of myelin) and also that release vesicles exist on a 

presynaptic active zone at the axonal membrane adjoining the NG2-glia membrane (Ziskin et al. 

2007; Kukley, Capetillo-Zarate, and Dietrich 2007). Nowadays, I know that these synapses exist 
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in different regions of the brain (Bergles et al. 2000; De Biase, Nishiyama, and Bergles 2010; 

Chittajallu, Aguirre, and Gallo 2004). Besides NG2-glia expression of classic synaptic receptors, it 

has been shown at mRNA level that they may also express postsynaptic scaffold proteins, such 

as “postsynaptic density protein 95” (PSD-95) (Sakry, Karram, and Trotter 2011), a standard 

component of the neuronal postsynaptic density, and it is crucial for synapse formation, 

maturation, and remodeling (El-Husseini et al. 2000; Marrs, Green, and Dailey 2001). 

It is important to highlight that glutamatergic receptors can be functionally expressed in 

the active synaptic site, extrasynaptically (close to synapses), or ectopically (far away from 

synapses). Therefore, NG2-glia response to neurotransmitters might not reflect the function of 

classic synapses per se. 

Currently, many questions remain unanswered regarding these neuron-NG2-glia 

synapses. First, it is not clear whether these synapses are sending unidirectional or bidirectional 

information. Second, are they present in all or just a subpopulation of NG2-glia? or is it dependent 

on the maturation of NG2-glia? Most importantly, neither the molecular composition of these 

synapses nor the potential main functions of these neuron-NG2-glia structures, have been 

completely elucidated. 

 

The million-dollar question: How does myelination induced by modulation of NG2-

glia behavior leads to changes in brain plasticity? 

A robust body of information supported that experiences are encoded in the CNS by 

changing the neuronal activity, which in turn commands NG2-glia to differentiate into 

oligodendrocytes. In consequence, these newly generated oligodendrocytes synthesize de novo 

myelin to wrap existing axons modifying the properties of the circuits. Albeit, the functional 

outcome of this process remains less understood. The evidence suggests that increases in 

myelination are necessary for the integration of new experiences and, hence, could be a potential 

mechanism for the refinement of cognitive processes, such as learning and memory.  
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It has been shown that the training in complex running wheel induces rapid 

oligodendrogenesis in mice (McKenzie et al. 2014; Xiao et al. 2016). Conversely, preventing NG2-

glia differentiation by knocking down the myelin regulatory factor (Myrf), under an inducible Cre-

lox system, led to impaired motor-learning of the task (McKenzie et al. 2014; Xiao et al. 2016). 

Similarly, it has been shown that the impairment of NG2-glia plasticity by methotrexate, which 

inhibits BDNF synthesis in neurons, triggers deterioration of working memory (Geraghty et al. 

2019). Notably, very recent studies using the same Myrf Cre-lox system as described above show  

Figure 6. Schematic of how newly generated oligodendrocyte modifies CNS circuitries. The red arrow in the scheme 
indicates where the newly generated oligodendrocyte will be placed. a) the hypothetical circuit is composed by three 
neurons. Neuron A and B project and form synapses with neuron C. If neuron B has a shorter axon length or if the 
axonal length of neuron A and B are equal but B has a higher degree of myelination (as illustrated), neuron C will be 
depolarized first by neuron B (1), followed by a depolarization of neuron A (2). Nonetheless, both depolarizations by 
themselves are insufficient to trigger an action potential in neuron C (3). After the differentiation of NG2-glia into 
oligodendrocytes and myelination of neuron B (4) leads to synchronization of the spike-arrival of neuron A and B to 
neuron C, triggering an action potential by spatial summation in neuron C (5). b) the hypothetical circuit is composed 
by three neurons. Neuron D project and form synapses with neuron E and F. The lower brunch has a longer length 
or lower myelination degree than the above brunch, leading of the generation of an action potential in neuron E first 
(1) followed by an action potential in neuron F (2), resulting in asynchronicity of neuron E and F activity. After the 
differentiation of NG2-glia and myelination of the lower axon (4), the delay in spike-time arrival between the two 
neurons is reduced, leading to the synchronization of the activity of neuron E and F (4). 
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that spatial and fear-conditioned learning would also require newly generated oligodendrocytes, 

and its blockage restricts memory formation (Steadman et al. 2020; Pan et al. 2020). Albeit in 

Steadman et al.  results suggested that spatial memory consolidation also required 

oligodendrogenesis, it could not be shown in the fear-conditioned memory model of Pan et al. 

Therefore, it could be that oligodendrogenesis play different roles according to the type of 

memory and cognitive task. 

Nonetheless, this does not explain the mechanism by which adaptive myelination 

contributes in the modulation of cognition. Undoubtedly, it is hard to imagine that solely the 

increase in conduction velocity of isolated neurons enhance information processing. Hence, the 

effect should rely upon modulating temporal relations, oscillations, and synchronicity in the 

interactions of distant brain regions or within local neural networks by adapting spike-timing 

arrival of action potentials (Pajevic, Basser, and Fields 2014). In this regard, I can take some 

lessons from the auditory system. Neurons can have anatomical differences, e.g., axonal length, 

which can be challenging for physiological processes that require the specific or simultaneous 

arrival of two neuronal signals to properly trigger a response in their target, as it is in the case of 

sound localization (Seidl 2014). Therefore, the precise tuning of signals is prompt by the 

sophisticated organization of myelin in axons that deliver the message from the cochlea to the 

brainstem nuclei for functional sound localization (Ford et al. 2015).   

Nonetheless, how can this be translated into adaptive myelination? As described above, 

within a random circuit (Fig. 6), neurons might differ in their axonal length, their degree of 

myelination, and myelin distribution (Tomassy et al. 2014). If two neurons with different axonal 

lengths or myelination pattern have one target neuron, their signals may arrive asynchronously, 

resulting in two independent and time-shifted subthreshold depolarizations on the target neuron 

without triggering an action potential. If de novo myelination occurs on one of the neurons, it 

could facilitate the simultaneous arrival of signals to the target, and subsequently, generate a 

higher depolarization for triggering an action potential in the target neuron by spatial 

summation. Thus, myelination could lead to the formation of coincidence detectors in the CNS. 

This wild oversimplification illustrates how new myelin derived by NG2-glia differentiation as the 

result of modulated by neuronal activity could affect brain plasticity. In principle, this mechanism 
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could be extended in a broad variety of different configurations (e.g., a neuron with two neuronal 

targets providing the bases of two circuits synchronization) and not only in the synchronicity of 

few signals but of entire circuits or coupling oscillators (Pajevic, Basser, and Fields 2014; Baraban, 

Mensch, and Lyons 2016). 

 Unfortunately, there is little evidence for this theoretical framework. Only this year, it has 

been shown that preventing the proper myelination of thalamocortical axons leads to an increase 

of asynchronized signals to neurons in the motor cortex, and in consequence, the deterioration 

of motor learning (Kato et al. 2020). In the same line, blocking oligodendrogenesis induced by 

fear-conditioned learning, prevented the coupling of cortical and hippocampal oscillators, 

seemingly crucial for learning and memory consolidation (Steadman et al. 2020).
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The aim of this doctoral thesis 

A lot of information has been gathered to understand how the modulation of NG2-glia 

behavior could contribute to adaptive myelination. Nevertheless, there are still gaps in our 

knowledge regarding the plastic nature of NG2-glia promoted by physiological stimuli.  

In an individual’s daily life, physical activity represents perhaps the most common 

experience and it has a dramatic impact on the organism's well-being. Not only it has an essential 

contribution to our health, such as decreasing the risk of cardiovascular diseases or metabolic-

related disorders, but also are the beneficial effects on the development of cognition, 

enhancement in cognitive performance, and general mental health widely studied (Perez et al. 

2019). Unfortunately, together with modernization also has come along physical inactivity, which 

has been estimated by the world health organization as the fourth leading risk factor for global 

mortality. With the increased sedentarism of western societies, it is to reverberate on people’s 

health, including mental, and cognition efficiency (Rodriguez-Ayllon et al. 2019; Cunningham et 

al. 2020). 

The knowledge of the effects of physical activity in the oligodendrocyte lineage remains 

scarce and limited (Tomlinson, Leiton, and Colognato 2016). Our group and others have already 

shown that increased physical activity lead to enhanced NG2-glia proliferation and differentiation 

(Simon, Gotz, and Dimou 2011; Mandyam et al. 2007; Ehninger et al. 2011; Tomlinson, Huang, 

and Colognato 2018). Nevertheless, the narrow scope has been limited to analyzing immediate 

behaviors of these cells, and most of these studies have utilized methodologies that might 

undermine the magnitude of the effect, or they inadvertently included confounding factors like 

those between exercise and enriched environment.  

Additionally, these studies have not determined the functional role of these changes in 

proliferation and differentiation. Exercise promotes improvement in cognitive processes such as 

learning and memory (Hillman, Erickson, and Kramer 2008). This cognitive enhancement has 

been historically attributed to the increase of neurogenesis in the dentate gyrus, which in turn 
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promotes circuit remodeling, and, as a result, improvement in processes such as learning and 

memory (van Praag et al. 1999; Olson et al. 2006; Diederich et al. 2017; Voss et al. 2019). 

In this doctoral thesis, it has been hypothesized that increased voluntary physical activity 

(VPA) leads to an augment in the differentiation of NG2-glia, which in turn increases the number 

of newly generated myelinating oligodendrocytes, thereby participating in the remodeling of the 

CNS. Although this increase in new oligodendrocytes occurs, the function of them has not been 

determined; thus, it has been hypothesized that NG2-glia differentiation induced by exercise 

enables enhancement in cognitive performance promoted by VPA. I also have hypothesized that 

physical activity promotes the initial differentiation of a subpopulation of NG2-glia but leads to a 

decrease in the long term plastic behavior of NG2-glia, a phenomenon not described before. 

For this, I tested NG2-glia behavior in a VPA paradigm, which primarily consists of 

providing mice with ad libitum running devices and compared them with animals housed in 

standard cages. VPA has the advantages of inducing increased neuronal activity in a physiological 

manner, minimizing the manipulation of the mice. Additionally, because of the non-invasive 

nature of this procedure, the results could have high relevance in translational research. Finally, 

by tracking the animals running distance, VPA can easily correlate the animal performance to the 

effects on NG2-glia behavior. Under this simple empirical setup, following objectives were 

established:  

 

Objective 1. Which modifications does VPA evoke to the behavior of NG2-glia? Which is the 

time course of this regulation? Are this changes restricted to the motor cortex? Although 

previous work has shown evidence that the proliferation and differentiation of NG2-glia are 

modified after physical activity (Simon, Gotz, and Dimou 2011; Mandyam et al. 2007; Ehninger et 

al. 2011; Tomlinson, Huang, and Colognato 2018), I want to determine whether our model of VPA 

will sustain similar effects and, most importantly, to deepen our understanding on the dynamics 

of continuous VPA on time. Also, I want to determine whether this changes happen only in the 

motor cortex or do they occur in other brain regions. For this, I will analyze the corpus callosum 

and the piriform cortex as well. For this, C57Bl/6 wild-type and NG2-CreERT2 x CAG-GFP mice 
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(Huang et al. 2014) were given 5-bromo-2-deoxyuridine (BrdU) for the whole duration of the 

experiment; a thymidine analog which is incorporated into the DNA of dividing nuclei, which 

allow to track and determine the degree of proliferation and differentiation of NG2-glia. 

However, as NG2-glia can differentiate without going through proliferation, BrdU-based 

strategies might undermine the absolute number of newly generated oligodendrocytes, I count 

direct differentiation of NG2-glia in tamoxifen induced NG2-CreERT2 x CAG-GFP mouse line that 

provide further information on the modalities of differentiation in NG2-glia. 

 

Objective 2. Do NG2-glia conserve the same characteristics they had before VPA? To 

understand whether NG2-glia identity and characteristics are modified after VPA, I will obtain 

and analyze their protein profile after VPA, which in turn could lead us to understand: 1) whether 

the NG2-glia phenotype changes after VPA and determine future plastic abilities, 2) to discover 

signaling pathways that are activated or inhibited in NG2-glia by VPA, and 3) to give us insights 

whether VPA leads to an enrichment of specific NG2-glia subpopulation after VPA. To accomplish 

this, I will use the Sox10-GFP animals, house them with or without running wheels, and NG2-glia 

will be sort out from brains by MACS and analyzed by a mass spectrometry approach. The Sox10-

GFP mouse line will be use because our group has determined in previous experiments that this 

strain shows the maximum number and purity of sorted NG2-glia by MACS. 

 

Objective 3. Does VPA similarly affect all NG2-glia populations? Here I want to find out whether 

the different populations of NG2-glia, namely the GPR17+ NG2-glia (Boda et al. 2011; Vigano et 

al. 2016; Lecca et al. 2008), changed their properties as result of VPA.  Sox10-GFP mice will be 

exposed to VPA and the number of GPR17+ NG2-glia cells will be determined. Additionally, 

differentiation of GPR17+ NG2-glia will be analyzed by providing free access to running wheels to 

GPR17-iCreERT2 x CAG-GFP animals (Vigano et al. 2016) after induction and count the number of 

newly generated oligodendrocytes generated from GPR17+ NG2-glia. 
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Objective 4. Do VPA-induced newly generated oligodendrocytes integrate into the circuitry, 

and do they contribute to exercise-induced enhanced cognitive performance? I am interested 

in whether oligodendrocytes generated after VPA were able to become mature myelinating 

oligodendrocytes, providing some hints of adaptive myelination in the CNS. Therefore, utilizing 

animals from the NG2-CreERT2 x CAG-GFP, I will count the number of newly generated mature 

oligodendrocytes after VPA. Additionally, I want to assess the functional role of these cells in 

cognitive performance enhancement. To achieve this objective, by working with Sox10-iCreERT2 

x Esco2-fl x CAG-GFP, I want to genetically prevent NG2-glia differentiation after induction with 

tamoxifen. After VPA, I will test the cognitive performance by a novel object recognition test. 

 

Objective 5. Are neuron-glia synapses necessary for NG2-glia differentiation? Neurons can 

communicate with NG2-glia through synapses (Bergles et al. 2000), and there is a possibility that 

the action of VPA over NG2-glia is mediated by increased neuronal activity. To analyze the role 

of synapses and avoid receptor or neurotransmitter-specific effect, I want to modulate the 

postsynapse by the deletion of scaffolding proteins in the postsynaptic density specifically of 

NG2-glia in the adult stage. Thereby, I established the Sox10-iCreERT2 x Shank3-fl x CAG-GFP 

mouse line that has a deletion in Shank3, an essential scaffold postsynaptic protein (Naisbitt et 

al. 1999), from the oligodendrocyte lineage in an inducible Cre-lox system. It has been shown 

that the deletion of Shank3 leads to a decreased number of synapses and diminished AMPAR and 

NMDAR currents (Arons et al. 2012). I proposed for this doctoral thesis to characterize this mouse 

line after induction to be used in future projects regarding VPA and as a psychiatric disease mouse 

model.
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Material and methods 

Materials 

Chemical and reagents 

 All chemicals and reagents are listed in table 1. While working with the various reagents, 

every necessary security measurement was taken into consideration and implemented for 

researcher safety. 

Table 1. List of chemicals and reagents. All compounds are listed according to their name, formula, or the 
abbreviation used for this doctoral thesis. Besides, each product's manufacturer and catalog number has been also 
registered. 

Name Formula / Abbreviation Company Catalog 

2-propanol (isopropanol) (CH3)2CHOH VWR 20842.330 

4’,6-Diamidino-2-phenyindole DAPI Sigma-Aldrich D9564 

5-Bromo-2’-deoxyurdine BrdU Sigma-Aldrich B5002 

5-ethynyl-2’-deoxyuridine EdU Thermo Fisher E10415 

Adult brain dissociation kit  
MACS Miltenyi 
Biotec 

130-107-677 

Agarose 
Alternate polymer of β-D-galactose 

and 3,6-anhydro-L-galactose 
VWR 351020 

Aqua-Poly/Mount  Polyscience 18606-5 

Betaine solution 5M  Sigma-Aldrich B0300 

Bromophenol blue C19H10Br4O5S Merck 108122 

Click-It™ EdU Alexa Fluor® 647  Thermo Fisher C10340 

Corn oil  Sigma-Aldrich C8267 

D (+)-Saccharose C12H22O11 Roth 4621.1 

Deoxynucleotide (10Mm) dNTPs Sigma-Aldrich D7295 

Double distilled water ddH2O Ulm University  

Dulbecco’s Phosphate-Buffered 
Saline with Ca+2, Mg+2, 
pyruvate, and glucose 

DPBS Thermo Fisher 14287080 

Ethanol 100% CH3CH2OH Honeywell 32205 

Ethanol 70% CH3CH2OH Roth T913.3 

Ethidium bromide solution 
(10mg/ml) 

C21H20BrN3 Sigma-Aldrich E1510 

Ethylene Glycol HOCH2CH2OH Sigma-Aldrich 102466 

Ethylenediaminetetraacetic acid 
disodium salt dihydrate (EDTA) 

EDTA-Na2 x 2H2O Sigma-Aldrich E5134 

FcR blocking reagent  
MACS Miltenyi 
Biotec 

130-101-547 

Ficoll® 400  PanReac AppliChem A2252 

Glacial acetic acid H3CCOOH VWR 20104.312 

Glutamine 200Mm (100x)  
Gibco / Thermo 
Fisher 

25030-024 

Glycerol water-free HOCH2CH(OH)CH2OH Honeywell 15523 
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Goat serum  
Gibco / Thermo 
Fisher 

16210072 

Hank’s balanced salt solution 
(with Mg+2 and Ca+2) 

HBSS 
Gibco / Thermo 
Fisher 

24020091 

Hydrochloric acid 37% HCl Sigma-Aldrich 30721 

Hydrochloric acid 6N HCl Roth O281.1 

Ketamine 10%  Bela-pharm 9089.01.00 

MACS Neuro Medium  
MACS Miltenyi 
Biotec 

130-093-570 

MACS NeuroBrew®-21  
MACS Miltenyi 
Biotec 

130-110-916 

Magnesium chloride  solution 
(25Mm) 

MgCl2 Sigma-Aldrich M8787 

Millipore water  University of Ulm  

Paraformaldehyde PFA Sigma-Aldrich P6148 

Peroxide solution 30% H2O2 Fischar 27500 

Platinum PCR SuperMix High 
Fidelity 

 
Invitrogen / Thermo 
Fisher 

12532016 

Potassium chloride KCl Merck Millipore 104936.05 

Potassium dihydrogen 
phosphate 

KH2PO4 Merck Millipore 104873.1 

PreOmics iST kit  PreOmics PO00001 

Primers for Genotyping  Biomers 
Self-
designed 

Proteinase K, lyophilized  Roth 7528.1 

Quick-load 100bp DNA ladder  New England Biolabs N0467S 

Rompun 2% (Xylazine)  Bayer 770081 

Sodium chloride NaCl Sigma-Aldrich S3014 

Sodium chloride (Solution 0.9%) NaCl B. Braun 3570350 

Sodium dodecyl sulfate (SDS) CH3(CH2)11OSO3Na Sigma-Aldrich L3771 

Sodium hydroxide NaOH VWR 28244.295 

Sodium phosphate dibasic 
anhydrous 

Na2HPO4 Sigma-Aldrich 71642 

Sodium phosphate monobasic 
dehydrate 

Na2HPO4 x 2H2O Sigma-Aldrich 71505 

Sodium phosphate monobasic 
dehydrate 

NaH2PO4 x 2H2O Sigma-Aldrich 71505 

Sodium tetraborate Anhydrous 
(Borax) 

Na2B4O7 Sigma-Aldrich 71996 

Tamoxifen C6H5C(C2H5)=C(C6H5)C6H4OCH2N(CH3)2 Sigma-Aldrich T5648 

Taq DNA Polymerase  
Homemade, kindly 
provided by Prof. Dr. 
Götz (LMU) 

 

Tetramethylrhodamine 
tyramide amplification kit  

TSA® kit Perkin Elmer SAT70200IEA 

Tissue-Tek® O.C.T.™ compound  Sakura Finetek 4583 

Trisodium citrate dehydrate HOC(COONa)(CH2COONa)2 x 2H2O Sigma-Aldrich 71405 

Triton™ X-100 t-Oct-C6H4-(OCH2CH2)XOH, X= 9-10 Sigma-Aldrich X100 

Trizma® NH2C(CH2OH)3 Sigma-Aldrich T1503 

Trypan blue solution  Sigma-Aldrich T8154 

Tween® 20  C26H50O10 Roth 9127.1 
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Homemade solutions recipes 

 Working and stock solutions prepared in the laboratory are listed in table 2. 

Table 2. Stock and working solutions recipes. (PBS: Phosphate buffered saline, PBS-T: Phosphate buffered saline 
with Triton™ X-100, PFA: Paraformaldehyde, PO4 Buffer: Phosphate Buffer, SDS: Sodium dodecyl sulfate, TAE Buffer: 
Tris-acetate-EDTA Buffer) 

Solution Composition 

Blocking solution 10% goat serum, 0.5% Triton X-100 in 1x PBS 

Borate buffer 0.1M Na2B4O7 in ddH2O, pH 8.5-8.6 

Buffer A 500mM KCl, 100mM Tris-base (Trizma®) in ddH2O; pH 8.7 

Citrate buffer 10mM tri-sodium citrate dihydrate, 0.05 % Tween 20 in ddH2O; pH 6.0 

Electrophoresis 
loading dye 

20% Ficoll® 400, 0.1M EDTA pH 8.0, 1% SDS, 0.25% Bromophenol blue 

Lysis buffer 0.1M Tris HCl pH 8.5, 0.5mM EDTA, 0.02% SDS, 0.2M NaCl in ddH2O, 0.1% Proteinase K 

PBS (10x) 137mM NaCl, 8.2mM Na2HPO4 x 2 H2O, 2.68mM KCl, 1.47mM KH2PO4; pH 7.4 

PBS-T 0.5% Triton X-100 in 1x PBS; pH 7.4 

PFA 20% 0.47 mM HNa2PO4 x 2 H2O, 20% PFA; pH 7.4 

PO4 buffer (10x) 1.04M NaH2PO4 x 2 H2O, 0.93 M NaOH; pH 7.2-7.4 

Re-expression 
medium 

1:50 NeuroBrew®-21, 1:100 L-glutamine 200Mm in MACS neuro medium 

SDS (10x) 0.248M Tris-base (Trizma®), 1.918 M Glycine, 35mM SDS, pH 8.3 

Storing solution 30% Glycerol, 30% Ethylene glycol, 10% PO4 Buffer (10x) 

TAE buffer (50x) 2M Tris-base (Trizma), 1M Glacial Acetic Acid, 0.1M Na2-EDTA x 2 H2O in Millipore H2O 

 

Antibodies 

 The list of all used antibodies is provided in table 3. 

Table 3. List of primary (1) and secondary (2) antibodies for immunostaining, and magnetic microbeads conjugated 
antibodies for MACS (3). All antibodies used in this doctoral thesis, displaying the class of antibody, animal host in 
which the antibody has been produced, and finally the manufacturer together with the catalog number. 

1. Primary antibodies: 

Antibody Isotype Host Company Catalog 

αAPC (CC1) IgG2b Mouse Calbiochem (Millipore) OP80 

αBassoon IgG2aκ Mouse Enzo Life Sciences ADI-VAM-PS003-F 

αBrdU IgG Rat Abcam Ab6326 

αDCX IgG Rabbit Abcam ab18723 

αGFAP IgG1 Mouse Sigma-Aldrich G3893 

αGFP IgY Chicken Aves Labs GFP-1020 

αGPR17 IgG Rabbit Homemade (Prof. Rosa)  

αIba1 IgG Rabbit Wako Chemicals 019-19741 

αKi67 (SP6) IgG Rabbit Thermo Fisher MA514520 

αMAG IgG1 Mouse Merck Millipore MAB1567 

αNeuN IgG1 Mouse Merck Millipore MAB377 

αNG2 IgG Rabbit Merck Millipore AB5320 
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αOlig2 IgG Rabbit Merck Millipore AB9610 

αS100β IgG1 Mouse Sigma-Aldrich S2532 

αShank3 IgG Rabbit Homemade (Prof. Böckers)  

 

2. Secondary antibodies: 

Antibody Isotype Host Company Catalog 

αChicken Alexa Fluor® 488 IgG Goat Thermo Fisher A11039 

αMouse IgG Cy®3 IgG Goat Dianova 115-165-166 

αMouse IgG2 Alexa Fluor® 647 IgG Goat Thermo Fisher A21242 

αMouse IgGaκ Alexa Fluor® 568 IgG Goat Thermo Fisher A21134 

αRabbit Alexa Fluor® 488 IgG Donkey Thermo Fisher A21206 

αRabbit biotinylated IgG Goat Vector Laboratories BA-1000 

αRabbit Cy®3 IgG Donkey Dianova 711-17-1525 

αRabbit Cy®5 IgG Donkey Dianova 711-17-1525 

αRat Cy®3 IgG Donkey Dianova 112-165-167 

     

3. Magnetic beads-associated antibodies for MACS: 

Antibody Isotype Host Company Catalog 

αAN2 Microbeads IgG1 Rat MACS Miltenyi Biotec 130-097-171 

αCD140a (PDGFRα) Microbeads IgG2b Rat MACS Miltenyi Biotec 130-101-547 

αO4 Microbeads IgM Mouse MACS Miltenyi Biotec 130-096-670 

 

Consumables 

 In table 4, I have only listed those consumables that were indispensable for our 

experiments (e.g., genotyping, the sacrifice of animals, immunostainings, cell sorting, and mass 

spectrometry) and not for regular daily laboratory work. 

Table 4. Consumables. Here it has been provided the name of the product, the company that manufactured them, 
and the catalog number. 

Name Company Catalog 

24-well clear TC-treated multiple 
wells 

Costar 3524 

C tubes MACS Miltenyi Biotec 130-096-334 

Conical tubes 15ml Schubert & Weiss GMBH 352096 

Conical tubes 50ml Schubert & Weiss GMBH 352070 

Coverslips, thickness: 1, 24x60mm Roth H878.2 

Filter papers, type 595 ½, D=240 GE Healthcare Whatman 10311651 

Insulin-syringe U-100 (0.5 ml/ 
0.3x8mm)  

Seidel Medipool 324870 

MACS SmartStrainers (70µm) MACS Miltenyi Biotec 130-110-916 

MS Columns MACS Miltenyi Biotec 130-095-823 
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Object slide Roth H870.1 

Pre-Separation Filters (70µm) MACS Miltenyi Biotec 130-095-823 

Reaction tubes 0.5ml Roth 7060.1 

Reaction tubes 1.5ml Roth 7080.1 

Reaction tubes 2.0ml Roth 7083.1 

Reaction tubes 5.0ml Nerbe plus 04-252-1000 

TC Plate 48 well, Standard, F Sarstedt 83.3923.005 

Tissue culture flask T-25 (25cm2) Sarstedt 83.3910 

 

Equipment, devices, and instruments 

 Table 5, only displays the equipment that was fundamental for buffer preparation, VPA 

performance measurement, sample processing, and data acquisition. 

Table 5. Equipment, devices, and instruments utilized for buffer preparation, experiment, sample processing, and 
data acquisition. It has been provided the name of the equipment and the name of the company, where they were 
purchased. 

Equipment Company 

Beam for motoric assessment Homemade 

Behavior arena Homemade 

Bioruptor® Standard Sonicator System Diagenode 

CM1900 cryostat Leica 

Compact fluorescent microscope BZ-9000 (Biorevo) Keyence 

CS SPE Confocal couple with DMi8 fluorescent microscope Leica 

Digital counter punch proximity switch magnetic induction Star Eleven 

ED open heating water bath Julabo 

EpiShear™ probe sonicator Active Motif 

Eppendorf ThermoMixer® F1.5 Eppendorf 

Explorer® analytical electronic balance EX224 OHAUS 

Finial steel ends for 19mm curtain poles Trendy-live 

Flying saucer running plate of 17.5cm diameter Little Family Members (USA) 

Gel documentation system with UV transilluminator Smart 3 VWR 

gentleMACS™ Octo dissociator MACS Miltenyi Biotec 

Heraeus™ Megafuge™ 40 R centrifuge Thermo Fisher 

Heraeus™ Pico™ 17 microcentrifuge Thermo Fisher 

Inverted light microscope DM IL Leica 

LSM 7 confocal microscope Zeiss 

MACS MultiStand MACS Miltenyi Biotec 

Magnetic hotplate stirrer RCS basic IKA 

Mini centrifuge Sunlab 

MINIPLUS® 3 peristaltic pump Gilson 

Neodym magnets Kany Store 

Neubauer counting chamber (0.1mm depth) Marienfeld 
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OctoMACS™ magnetic separator MACS Miltenyi Biotec 

PCR-thermal cycler advanced® primus 96 Peqlab 

pH 525 digital pH-meter  WTW 

PowerPac™ HC high-current power supply Bio-Rad 

Precision balance PBS/PBJ Kern 

Q Exactive™ HF Hybrid Quadrupol-Orbitrap™ Mass spectrometer Thermo Fisher 

Rotarod model 47600 Ugo Basile 

Running wheels 14cm diameter Homemade 

Standard orbital shaker model 1000 VWR 

Stereomicroscope M60 Leica 

UltiMate™ 3000 RSLCnano System Thermo Fisher 

Ultrasonic bath sonicator Thomas Scientific 

Vacuum concentrator H. Saur Laborbedarf 

Video camera Toshiba Camileo 200x Toshiba 

Vortem shaking incubator UniEquip 

Vortex-Genie 2 Scientific Industries 

 

Software 
 In this section, it has been displayed all the software for data acquisition (e.g., microscope 

imaging, behavior assessment, imaging analysis, proteomic data analysis, image processing, and 

analysis, data analysis, and figure preparation). 

Table 6. Software used for the acquisition and analysis of the data. Together with the software name, it is provided 
the company or developer of each one. 

Software Developer 

Adobe Illustrator Adobe Systems 

BZ Analyzer Keyence 

BZ-II Viewer Keyence 

EthoVision XT Noldus 

GraphPad Prism 7.02 GraphPad Software Inc. 

ImageJ 
National Institute of Health and the Laboratory for Optical and 
Computational Instrumentation, USA 

LAS X Life Science Leica 

MaxQuant 
Computational Systems Biochemistry (Prof. Jürgen Cox, MPI for 
Biochemistry) 

Perseus 
Computational Systems Biochemistry (Prof. Jürgen Cox, MPI for 
Biochemistry) 
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Methods 

Animals, transgenic lines, housing, and running performance tracking  

All experiments were performed following the respective authorities’ ethical guidelines 

of the Ludwig Maximilians Universität, Ulm University, and the government of Germany to ensure 

animal welfare in research. All mice were adult female and male at the 8 – 12 weeks old age (18 

– 25g of weight) from the starting point of the experiments. Most of the animal background 

corresponded to the strain C57Bl/6 except for the Sox10-eGFP mouse, which has an FVB/N 

background. Animals were bred in standard conditions; and given food and water ad libitum, 

including during experimental proceedings. During the experiments, mice were separated and 

individually caged to follow up on their running performance. During breeding and tests, the light 

cycle was automatically programmed to implement 12 hours of dark and 12 hours of light cycle. 

All running devices consisted of a regular running wheel composed by a metallic grid of 

14cm diameter or a flying saucer exercise wheel for small pets made of plastic of 17.5cm width. 

Running performance was measured by a homemade device, which consisted of two parts: 1) a 

magnet that was installed on the running apparatus and 2) a magnetic sensor that was connected 

to a digital clock-like counter. In principle, each time the magnet crossed in front of the sensor, 

it induced a signal and registered by the digital counter. Thereby, I managed to count the number 

of rotations of the running wheel or flying saucer made. On a daily base, counters digits were 

registered for posterior analysis. The conversion of rotations to distance was performed by the 

following geometric formula: 𝑑 ∗ 𝜋 ∗ 𝑟 = 𝐷, where 𝑑 is the diameter of the wheel, 𝜋 is the ratio 

of a circle's circumference (𝑑 ∗ 𝜋) to its diameter (𝐷), and 𝑟 is the number of rotations. Running 

performance was defined as D per unit of time (days or weeks). 

In this doctoral thesis, the following transgenic mouse lines were used:  

1) NG2-CreERT2 x CAG-GFP for tamoxifen-inducible GFP expression in NG2-glia (Huang et 

al. 2014) This mouse model was generated by crossing the NG2-CreERT2 with the CAG-GFP mouse 

line (Huang et al. 2019; Nakamura, Colbert, and Robbins 2006). The NG2-CreERT2 was generated 

by introducing the Cre-recombinase (CreERT2) sequence, by a knock-in approach, downstream 

the promoter of NG2. Thus, Cre-recombinase will be expressed exclusively in those cells, in which 
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NG2 promoter has higher strength, such as NG2-glia and pericytes. The expression of CreERT2 in 

multiple cells does not present a problem for our experiments due to the distinctive morphology 

of the cells. The Cre-recombinase has been fused to the human-estrogen ligand-binding domain, 

therefore, making the CreERT2 only catalytically active under the administration of tamoxifen. 

Finally, mice have the GFP construct, which upstream has a stop codon flanked by two 34 base-

pair loxP sites, all the sequence under the cytomegalovirus-β actin (CMV) promoter (Nakamura, 

Colbert, and Robbins 2006). Thus, in this mouse line, Cre-recombinase is expressed only in NG2+ 

cells, which application of tamoxifen push for the removal of the stop codon upstream the GFP 

construct, thereby, constitutively expressing the reporter in NG2+ cells, allowing to follow the 

fate of cells over time. 

2) Sox10-GFP mouse line was purchased from the Mutant Mouse Resource and Research 

Center (MMRRC). Mice were generated under the GENSAT project from Nathaniel Heintz of the 

Rockefeller University in an effort to map the expression of genes in the central nervous system 

of the mouse (Gong et al. 2003). In this mouse line was introduced a modified bacterial artificial 

chromosome (BAC) containing inserted GFP upstream of the targeted gene. Because Sox10 is 

expressed in the whole oligodendrocyte lineage, both NG2-glia and oligodendrocytes 

constitutively express the reporter. 

3) GPR17-iCreERT2 x CAG-GFP mouse line for tamoxifen-inducible GFP expression in 

GPR17+ NG2-glia was generated by the pairing of the GPR17-iCreERT2 and the CAG-GFP mouse 

line (Vigano et al. 2016; Nakamura, Colbert, and Robbins 2006). A difference with the NG2-

CreERT2 x CAG-GFP is that in GPR17-iCreERT2 mice, modified BAC containing the improved CreERT2 

(iCreERT2) (Shimshek et al. 2002) was introduced under the promoter of GPR17 and, 

subsequently, BAC was randomly inserted in the mouse genome. Thus, similar to the 

aforementioned NG2-CreERT2, iCreERT2 catalytic activity happens solely after tamoxifen 

induction; thus, constitutively expressing GFP only in GPR17+ cells. 

4) Sox10-iCreERT2 x Esco2-fl x CAG-GFP mouse line for tamoxifen-inducible GFP expression 

and conditional knockout of cohesion acetyltransferase establishment of sister chromatid 

cohesion 2 (Esco2) in the whole oligodendrocyte lineage (Simon et al. 2012; Schneider et al. 2016; 



Material and Methods 
 

56 
 

Whelan et al. 2012). For this model, three mouse lines have been crossed: The Sox10-iCreERT2, 

the CAG-GFP, and the Esco2-fl. Similar to the GPR17-iCreERT2 mouse model, mice were generated 

by the random insertion of a modified BAC containing the iCreERT2 under the Sox10 promoter in 

the genome. Regarding the Esco2-fl mice, two loxp sites have been introduced, flanking exons 2 

and 3 of the targeted gene, impairing the expression of Esco2 in tamoxifen-induced cells. It has 

been shown that Esco2 is important for the separation of sister chromatids during mitosis, and 

its deletion impairs this function, promoting cells to undergo apoptosis (Whelan et al. 2012). 

Thus, in this mouse line is possible to promote GFP expression and Esco2 deletion after tamoxifen 

induction, leading to ablation of proliferating NG2-glia (Schneider et al. 2016). Despite that 

oligodendrocytes have also a strong Sox10 promoter; firstly, oligodendrocytes are postmitotic 

cells; hence, do not proliferate. Secondly, it has been shown that myelin is not affected in these 

mice (Schneider et al. 2016). Interestingly, it has been shown that, collaterally, these mice 

present decreased NG2-glia differentiation; thus, it could be used as a model for blocking 

oligodendrogenesis (Schneider et al. 2016; Fard et al. 2017). 

5) Sox10-iCreERT2 x Shank3-fl x CAG-GFP mouse line for tamoxifen-inducible GFP 

expression and conditional knockout of the postsynaptic scaffold protein Shank3. Mice were 

generated by pairing the Sox10-iCreERT2, the CAG-GFP, and the Shank3-fl mouse line (kindly 

provided by Prof. Dr. Tobias Böckers, not published mice). Shank3 is a member of the Schank 

family of scaffold proteins, which is important for the structural integrity and assembly of the 

post synapse (Naisbitt et al. 1999; Arons et al. 2012; Tu et al. 1999). In the Shank3-fl mice, two 

loxp sites have been introduced, flanking the exon 11 of the target gene. Although there is no 

literature of this mouse model, it has been observed that similar constitutive knockouts show a 

reduction in the major isoforms of shank3 and decreased number of AMPAR in the postsynaptic 

density (Schmeisser et al. 2012). Because NG2-glia form synapses with neurons (Bergles et al. 

2000; De Biase, Nishiyama, and Bergles 2010), it could be that Shank3 also plays a role in the 

maintenance of neuron-glia synapses. Thus, in this mouse line is possible to promote GFP 

expression and Shank3 deletion after tamoxifen induction, possibly impairing communication 

between NG2-glia and neurons. 
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DNA extraction and Genotyping 

 After pups weaning, the tip of the tail or a piece of an ear, removed while ear tagging, 

was used for DNA extraction. Biological samples were introduced into a 1.5ml reaction tube 

together with 500µl of lysis buffer containing the proteinase K. Afterwards; the sample was left 

in a vortem shaking incubator at 55°C and 1300rpm overnight.  

 On the next day, samples were centrifuged at 12000rpm for 10min. The supernatant was 

transferred into a fresh 1.5ml reaction tube, and 500µl of isopropanol was added and mixed for 

5min on an orbital shaker at room temperature. Samples were centrifuged again at 12000rpm 

for 10min. Then, the supernatant was discarded carefully, and the pellet was left drying with the 

reaction tubes leads open and top-down. Finally, 100µl of 10mM Tris-HCl of pH 8.5 was on top of 

the pellet and incubated in a vortem shaking incubator at 55°C for 2h. 

 Depending on the DNA sequence, a different protocol was used for sequence 

amplification (see table 7): 

Table 7. Specifications for the amplification of the different genes. The tabledisplays the different genes amplified 
in this doctoral thesis and for each, the reaction buffer, the utilized primers, and the cycle program for the various 
PCR. 

Gene Reagents and amounts Primers Thermocycler program 

Esco2 

 
12µl of ddH2O 
2µl MgCl2 
2µl Buffer A 
0.5µl of each primer 
0.5µl dNTPs 
0.5µl Taq Polymerase 
2µl DNA sample 
 

S: ACT TGG GTC CTC ATT CTG CAG AGC 
AS: GTG CAC ATA CTT ATT GAC AGG TGG 

Hot start 94°C 
94°C for 3min 
26 cycles 
94°C for 30s 
55°C for 30s    
72°C for 1min 
end 
72°C for 10min 

GFP 

 
12µl of ddH2O 
1.5µl MgCl2 
2.5µl Buffer A 
5µl Betaine 
1µl each primer 
0.5µl dNTPs 
0.5µl Taq Polymerase 
1µl DNA sample 
 

S: CTG CTA ACC ATG TTC ATG CC 
AS: GGT ACA TTG AGC AAC TGA CTG 

Hot start 94°C 
94°C for 5min 
29 cycles 
94°C for 30s 
55°C for 30s    
72°C for 1min 
end 
72°C for 10min 
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GPR17-iCreERT2 

 
3.5µl of ddH2O 
2.5µl MgCl2 
2.5µl Buffer A 
2.5µl Betaine 
0.5µl of each primer 
0.5µl dNTPs 
0.5µl Taq Polymerase 
2µl DNA sample 
 

S: CTT GGC ACC ATA GAT CAG GC 
AS: TAT GGC AGG AGG CAT GCG CA 

Hot start 94°C 
94°C for 3min 
30 cycles 
94°C for 30s 
55°C for 45s    
72°C for 2.5min 
end 
72°C for 5min 

NG2-CreERT2 

 
12µl of ddH2O 
1.5µl MgCl2 
2.5µl Buffer A 
5µl Betaine 
0.5µl of each primer 
0.5µl dNTPs 
0.5µl Taq Polymerase 
1µl DNA sample 
 

Cre-S: GGC AAA CCC AGA GCC CTG CC 
WT-AS: GCT GGA GCT GAC AGC GGG 
Cre-AS: GCC CGG ACC GAC GAT GAA GC 
 
 

Hot start 94°C 
94°C for 3min 
30 cycles 
94°C for 30s 
64°C for 30s    
72°C for 45s 
end 
72°C for 2min 

Shank3 

 
12µl platinum SuperMix 
0.5µl of each primer 
1µl DNA sample 
 

S: TCTCTGGCCCTGGTTTTATG 
AS: CAGTGAAGAAGCCCCAGAAG 

Hot start 95°C 
95°C for 3min 
36 cycles 
95°C for 30s 
60°C for 1min    
72°C for 2min 
end 
72°C for 10min 
 

Sox10-eGFP 

18µl of ddH2O 
1.5µl MgCl2 
1.5µl Buffer A 
0.5µl of each primer 
0.5µl dNTPs 
0.5µl Taq Polymerase 
2µl DNA sample 
 

S: TTC ACC TTG ATG CCG TTC T 
AS: GCC GCT ACC CCG ACC AC 

Hot start 95°C 
95°C for 5min 
30 cycles 
95°C for 30s 
59°C for 30s    
72°C for 20s 
end 
72°C for 3min 

Sox10-iCreERT2 

11µl of ddH2O 
2.5µl MgCl2 
2.5µl Buffer A 
5µl Betaine 
0.5µl of each primer 
0.5µl dNTPs 
0.5µl Taq Polymerase 
5µl DNA sample 
 

S: AAA CAC CCA CAC CTA GAG AC 
AS: ACC ATT TCC TGT TGT TCA GC 

Hot start 94°C 
94°C for 3min 
27 cycles 
94°C for 30s 
52°C for 30s    
72°C for 1min 
end 
72°C for 10min 

 

 To analyzes the amplified sequences and confirm the product size, the DNA samples were 

run in an electrophoresis gel. Afterward, the gel was assembled by dissolving 2% agarose in 1x 

TAE buffer. The solution was heated in a microwave, programmed at 600 W, for a few minutes. 

After heating, the agarose solution was cooled down with ice and by stirring to avoid the irregular 

polymerization of the gel. Meanwhile, ethidium bromide was added, depending on the volume 
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of the gel (e.g., for 200ml of agarose solution, 10µl of ethidium bromide was added). After 

cooling, the solution was poured in polystyrene electrophoresis running chamber, a plastic comb 

was placed to generate the sample pockets, and it was left to dry. As soon as the gel polymerized, 

the running chamber was introduced into a bath chamber filled up with a 1x TAE buffer, and the 

comb was removed from the gel. Each amplified DNA sample was added with 4µl of 

electrophoresis loading dye, and, subsequently, 15µl of each loading dye and DNA mixture was 

transferred into the gel pockets. The power supply was fixed to 100V, generating an electric field 

to run the samples for 30 – 50min, depending on the DNA amplification. Each group of probes 

was run together with a DNA ladder and a positive, a negative, and wild-type control. Finally, the 

gel was analyzed by a UV transilluminator in a gel documentation system, allowing the 

visualization of the different DNA fragments. 

 

Tamoxifen induction and BrdU or EdU treatment 

All Cre-recombinase mouse lines were induced with tamoxifen, which was diluted initially 

in 10% ethanol, followed by 90% corn oil to a final concentration of 40mg/ml. To improve the 

dissolution of tamoxifen, a probe sonicator was implemented for 8min and at 40% intensity. 

Induction protocol consisted of administering each adult mouse tamoxifen three times for a 

week, every second day, a dose of 10mg of suspended tamoxifen per 30g of body weight. 

The synthetic nucleoside 5-bromo-2’-deoxyuridine (BrdU) or the 5-ethynyl-2’-

deoxyuridine (EdU), both analog to the nucleotide thymidine, were administered orally with the 

drinking water in a concentration of 1mg/ml of BrdU or 0.2mg/ml of EdU and 1% sucrose in tap 

water. BrdU and EdU were employed to tag dividing cells from its administration until the animal 

was sacrificed. Hence, providing a marker for proliferation and, together with the CC1 marker, 

for differentiation. After the preparation of BrdU or EdU, the stock was stored at 4°C for no longer 

than one week. 
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Histology and Immunofluorescence 

 Animals were deeply anesthetized with a drug cocktail containing 3.63% ketamine and 

0.175% xylazine diluted in 0.9% NaCl solution. Afterward, transcardial perfusion was performed 

by pumping 25ml of PBS, followed by 50ml of 4% PFA in PBS as a fixative. Later, brains were 

extracted and embedded in 4% PFA in PBS for between 30min – 2h. After postfixation 

completion, brains were transferred to 30% saccharose in PBS overnight, or until sink, for 

cryoprotection. 

 Free-floating 30µm thick sections of were prepared with the help of a cryostat and kept 

in PBS at 4°C for short-term storage or in storing solution at -20°C for long-term storage.  For 

staining, slices were blocked and permeabilized in “blocking solution” for 1h. After washing with 

PBS, sections were incubated in specific combinations of the following primary antibody diluted 

in blocking solution overnight at 4°C with shaking:  rabbit αNG2 (1:500), mouse IgG2b αCC1 

(1:50), chicken αGFP (1:500), rabbit αGPR17 (1:1000), mouse IgG1 αMAG (1:300), rabbit αKi67 

(1:100), rabbit αDCX (1:200), mouse IgG1 αGFAP (1:500), rabbit αIba1 (1:500), mouse IgG1 

αNeuN (1:300), rabbit αOlig2 (1:200), mouse IgG1 αS100β (1:500), rabbit αShank3 (1:300), and 

mouse IgG2aκ αBassoon (1:250). Next day, slices were in PBS and incubated in a specific 

combination of the following secondary antibodies diluted in blocking solution for 2h at room 

temperature with shaking: αChicken Alexa Fluor® 488 (1:250), αMouse IgG2b Alexa Fluor® 647 

(1:250), αRabbit Alexa Fluor® 488 (1:250), αMouse IgG Cy® 3 (1:250), αMouse IgGaκ Alexa Fluor® 

568 (1:250), αRabbit Cy® 3 (1:250), αRabbit Cy® 5 (1:250), and αRat Cy® 3 (1:250). Past this time, 

slices were washed in PBS.  

For the GPR17 immunostaining, slices were first incubated in biotinylated α-rabbit (1:250) 

and detection made through the signal amplification based on a TSA® kit (Perkin Elmer). For this, 

slices were treated with 1% H2O2 in PBS for 30min, followed by washings in PBS. Afterward, 

incubation in Streptavidin-HRP (1:100, provided by TSA® kit) was performed overnight at 4°C. The 

next day, slices were washed with PBS and incubated in tyramide fluorophore (1:50) in 1x 

amplification diluent (both provided by TSA® kit) for 3 – 10min. Finally, slices were washed in 

PBS. 
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For BrdU immunostaining, initially, other immunostainings were performed. Then the 

slices were fixated with 4% PFA in PBS, followed by incubation in previously warmed up citrate 

buffer at 96°C for 15min, followed by a cooling down step for 15min at room temperature and 

finally washing with PBS. As an alternative to citrate buffer, I incubated the slices in 2N HCl for 1h 

at room temperature. Afterward, slices were washed in borate buffer two consecutive times for 

15min, and subsequently, washing the slices with PBS. After antigen retrieval treatment, BrdU 

immunostaining was performed as the aforementioned protocol with incubation of the primary 

antibody rat αBrdU (1:250) and, later on, incubation of the secondary antibody αRat Cy® 3 (1:250) 

(1:250). For EdU detection, all other stainings were performed before, and slices were treated 

with a highly-specific click reaction kit (Click-iT™ Alexa Fluor® 647).  

 After immunostaining, slices were counterstained with DAPI (1:1000 in ddH20) and 

mounted on a slide with aqua-poly/mount. To evaluate immunostainings' quality or to generate 

tile imaging, a compact fluorescent microscope was used, and sequential scanning reconstruction 

was performed in the BZ-analyzer. Within the same experimental cohort, camera exposure was 

kept constant for each channel. For high-resolution images and co-localization determination, 

pictures were taken in a confocal microscope and analyzed through the open-source Java-based 

image processing software ImageJ and Leica’s LAS X Life Science. Settings such as laser intensity, 

PMT gain, wavelength bandpass filter, and photodetector offset were identical within the same 

sample cohort.  

 For cortex analysis, images of a whole column of the cortex, containing each cortical layer. 

This was done for at least three slices per animal. The advantages of this strategy were, first, to 

avoid the counting variability among different cortical layers. Second, to analyze and compare 

the effects among different cortical layers. For CC analysis, three pictures of a different part of 

the region were taken, and this was performed for at least three slices per animal. For the 

creation of equally bins size, the cortex was measured, from pia to ventral, and then divided into 

three equal areas, and named from dorsal to ventral as bin 1 - 3. For counting, only cells 

containing visible DAPI staining were taken into consideration. 
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Magnetic associated cell sorting (MACS) 

 Isolation of NG2-glia was performed by a protocol based on the association of conjugated 

antibodies with a magnetic bead, which recognizes a specific membrane surface protein on the 

cells of interest. 

Animals were sacrificed after two and four weeks of voluntary physical activity (VPA 

group) and then sacrificed by cervical dislocation. Control individuals were selected accordingly 

to the final age of the VPA group. After sacrifice, brains were extracted and embedded in  ice-

cold Hank’s balanced salt solution (HBSS) with Ca+2 and Magnesium (Mg+2). Under a 

stereomicroscope, meninges were removed to diminish contamination from fibroblast or 

epithelial cells, and the cortical GM was mechanically isolated. The isolated cortices were cut in 

4 – 8 smaller sagittal slices and introduced into a c tube (a particular container that is placed in 

the gentleMAC® Octo Dissociator) containing 1900µl of “buffer Z” (fantasy name from 

manufacture) until the cell disaggregation step. 

For cell dissociation and MACS, I utilized the commercially available “Adult Brain 

Dissociation Kit” and antibodies conjugated with the magnetic beads from Miltenyi Biotec. 

Therefore, it must be highlighted that the specific content of the buffers or the enzymes is not 

available for the public. Thus, I will provide the commercial fantasy names of such products. 

Already in the buffer Z, the tissues were added 50µl of “enzyme P” and, subsequently, 30µl of 

enzyme mixture was added, which consisted of 20µl of “buffer Y” and 10µl of “enzyme A.” 

Afterward, the lead of the c-tubes was closed and placed upside down (it was made sure that 

none pieces were stuck on the lead) in an instrument for semi-automated and standardized tissue 

dissociation/homogenization with heaters named gentleMAC® Octo Dissociator.  The device's 

sole purpose is to homogenize samples by steady and smoothly stirring in a temperature-

controlled environment. 

After dissociation, c tubes were centrifuged at 300g at room temperature for 1min, to 

make sure that all the homogenized solution was pull to the bottom. For the next step, the 

homogenate was resuspended and pass through the MACS SmartStrainer® (sieve) of 70µm pore 

size, previously placed on a 15mL conical tube. Afterward, ice-cold DPBS (with Ca+2, Mg2+, 
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glucose, and pyruvate) was added into the tube, again, through the MACS SmartStrainer®, to 

recover cells caught in the filter and, thereby, increasing the number of sorted cells. Then, MACS 

SmartStrainer® was discarded, and the conical tube was centrifuged at 300g for 10min at 4°C, 

followed by complete removal of the supernatant. 

To reduce the probability of clogging the separation column, Ithe debris of produced by 

myelin and dead cells was removed of the samples. For this, into each conical tube was added 

900µl of “debris removal solution,” together with 3100µl DPBS, were mixed with the sieved 

homogenate. Later, 4000µl of DPBS was slowly and carefully added on top of the previously 

mixed solution to form two phases. The biphasic solution was centrifuged at 3000g at 4°C for 

10min in a full brake and full acceleration mode, resulting in a three-phase solution (above the 

supernatant, middle debris and bottom the solution and the cell pellet). The upper and middle 

phases were discarded, and the tube was filled up until 15ml with DPBS. 

The conical tube was filled up with cold DPBS to a final volume of 15ml, followed by gently 

inverting to resuspend the pellet. Afterward, the sample was centrifuged at 1000g at 4°C for 

10min, and subsequently, the supernatant was eliminated, leaving the pellet intact. 

Cells were resuspended with 2ml of “re-expression medium” and placed in a bain-marie 

at 37°C with shaking for 30 – 45min. Later, samples were centrifuged at 300g for 10min. The 

supernatant was discarded and 80µl of DPBS was added on the pellet, subsequently, 10µl of FcR 

blocking agent was added, mixed, and incubated in the fridge (2°C - 8°C) for 10min. 

Meanwhile, a mix of antibodies was prepared, adding 4µl of each antibody of αO4, 

αCD140 (PDGFRα) and αAN2 (NG2) Microbeads, reaching a final volume of 12µl of antibody 

solution mixture. Then, 10µl of the antibody solution was added into the sample and incubated 

for 15min in the fridge (2°C - 8°C). Eventually, cells were washed with 2ml of DPBS and centrifuged 

at 300g for 10min. Afterward, the supernatant was discarded, and 500µl of DPBS was added. 

For sorting, an OctoMACS™ magnetic separator was coupled to a MACS MultiStand, 

providing a magnetic field, and a MACS MS column was inserted into the magnet, to retain the 

labeled cells. A pre-separation filter of 70µm diameter pore was located on top of the column 

and a conical tube on the bottom, to collect all unlabeled cells. After applying 500µl DPBS, the 
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sample was added and passed through the column. Then the column was washed with 500µl 

DPBS three times. Finally, cells were pushed out of the column, collected, and counted with a 

Neubauer chamber. Finally, the sample was centrifugated at 300g for 10 min, and the 

supernatant was discarded. Cells were stored at -80°C until they were processed and run in the 

mass spectrometer.      

 

Liquid chromatography-mass spectrometry 

Cells were processed with the PreOmics Kit as described by the manufacturer. Every 

reagent and consumables were provided by the manufacturer. For this, cells samples were added 

50µl of “lyse buffer” and placed in a heating block at 95°C and 1000rpm for 10min. Afterward, 

samples were spin down at room temperature and 300g for 10s. Next, samples were sheared in 

a temperature controlled Bioruptor® sonicator for 10 cycles of 30s intercalating on and off mode. 

Later, samples were transferred to a cartridge and cool down to room temperature. Then, 50µl 

of “digest buffer” previously diluted in “resuspend buffer” was applied into the sample and 

placed in a pre-heated heating block at 37°C and 500rpm for 3h. To stop the proteolysis, 100µl 

of “stop buffer” was added to the cartridge and placed in a heating block at room temperature 

and 500rpm for 1min. Afterward, the cartridge was centrifuged at 3800g for 3min and wash two 

times, each with the same centrifugation configuration. Afterward, 100µl of “elute buffer” was 

placed and was collected after centrifugation at 3800g for 3min. The collection tube was placed 

in a vacuum concentrator at 45°C until completely dry. Finally, LC-Load was added, aiming for a 

final peptide concentration 1g/l. Finally, the collection tube was sonicated in an ultrasonic bath 

for 5min.  

Tryptic peptides corresponding to 1x104 cells were injected in an UltiMate™ 3000 

RSLCnano System and separated in a 15-cm analytical column (home-packed 75μm ID with 

ReproSil-Pur C18-AQ 2.4 μm from Dr. Maisch) with a 120-min gradient from 3 to 40% acetonitrile 

in 0.1% formic acid. The effluent from the HPLC was directly electrosprayed into a Q Exactive™ 

HF Hybrid Quadrupol-Orbitrap™ mass spectrometer operated in data-dependent mode to switch 

between full-scan MS and MS/MS acquisition automatically. Survey full-scan MS spectra (from 
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m/z 375–1600) were acquired with resolution R=60,000 at m/z 400 (AGC target of 3x106). The 

ten most intense peptide ions with charge states between 2 and 5 were sequentially isolated 

(window 2.0 m/z) to a target value of 1x105 and fragmented at 27% normalized collision energy. 

Typical mass spectrometric conditions were spray voltage, 1.5 kV; no sheath and auxiliary gas 

flow; heated capillary temperature, 250ºC; ion selection threshold, 33.000 counts. 

MaxQuant 1.5.2.8 was used to identify proteins and quantify them by LFQ. Conditions 

were: Database, Mus musculus (uniprot_UP000000589 downloaded on the 14.01.2015); MS tol, 

10ppm; MS/MS tol, 0.5 Da; Peptide FDR, 0.01; Protein FDR, 0.01 Min. peptide Length, 7; Variable 

modifications, Oxidation (M); Fixed modifications, Carbamidomethyl (C); Peptides for protein 

quantitation, razor and unique; Min. peptides, 1; Min. ratio count, 2. Identified proteins were 

considered differential if the LFQ log2 p-value were lower than 0.05 (Perseus Multi comparison 

t-test with default parameters) when 2w VPA vs. control or 4w VPA vs. control groups were 

compared to each other. 

 

Analysis of cognitive and motoric behavior 

Novel Object Recognition (NOR) test: 

 Our protocol was based on the methods employed in (Leger et al. 2013), which had a 

total duration of five days. The first three days were for habituation, followed by one-day 

familiarization to the objects, and on the last day, one of the objects was replaced by a novel 

object. All sessions were performed in a home-made arena of 36cm wide x 36cm long x 18cm 

high, and wood shavings were spread on the bottom. After each trial, the arena was cleaned with 

70% ethanol to avoid odorant cues from other mice. The objects were placed in one half of the 

arena, separated 16cm from each other, and 10cm from the arena walls and the middle line. 

 To have a successful novel object recognition (NOR) test, I needed to eliminate any type 

of potential stressor. Therefore, I proceeded to take the following precautions. First, to reduce 

the stress by handling, each mouse was handled for 1min at least two weeks before the test 

started, twice per week. Second, to reduce stress by novelty (neophobia), animals were exposed 

to a novel object (different from the used in the test) one week before starting the experiment. 
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Third, to reduce environmental stress present in the behavioral room, mice were brought to the 

place at least 1h before beginning each session. Fourth, three-day habituation to the arena, 

avoiding any potential neophobic response during the test. 

 The objects were selected following the suggestions in (Ennaceur 2010) in an effort to 

maximize differences between the familiar and the novel object. I used two sets of objects. On 

the one hand, within the set, the objects were completely identical. On the other hand, between 

sets, the objects were different in color, shape, material, and brightness, although they were 

similar in their dimensions. Nevertheless, the introduction of several distinctive features 

between the two sets of objects might inadvertently incline the intrinsic preference of the mice 

towards one of them. Therefore, to reduce systematic error and interpretation of results due to 

object preference bias, the set of objects considered familiar or novel, and, as well, its location 

within the arena was randomly designated for each mouse. 

Regarding odor, which could drive the mice's preference towards one of the objects, both 

object sets were inodorous. Furthermore, before each trial, they were wiped with 70% ethanol 

to avoid odorant cues from other mice or the researcher and let dry for 3min. In the same line, 

for each trial, the arena was wiped with 70% ethanol, to reduce odorant references left by other 

mice, and gloves were changed for a fresh pair. 

Regarding the timeline, a three-day habituation protocol was performed not only to 

reduce potential environmental stressors as mentioned above but to diminish the environmental 

novelty and promote further exploration towards the objects. Thus, animals were induced to the 

empty arena for 10min, twice per day, and each time point was at least 6h apart. After each trial, 

the animal was returned to its cage. For the familiarization protocol, mice were brought to the 

arena again, albeit this time, they were exposed to two identical objects for 10min. Finalized this 

session, they were returned to their cages for 24h. On the last day, mice were exposed to one 

object from the previous day (familiar) and one from the other set (novel) for 10min. 

For the analysis, each trial was recorded with a camera and video-tracked by the software 

Ethovision XT (both provided by Noldus Information Technology). In the software, I established 

a circular area with a 4cm radius surrounding each object. Explorative behavior of the objects 
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was defined as “the amount of time the animal is close to the object showing a sniffing behavior 

towards the object,” and it was manually counted with the help of the software stop-watch. 

Recognition index (RI) was calculated by the following formula: 

𝑅𝐼 =  
𝑡𝑁𝑂 − 𝑡𝐹𝑂

𝑡𝑂𝐸
 

Where 𝑡𝑁𝑂, represent the time exploring the novel object, 𝑡𝐹𝑂, time exploring the familiar 

object, and 𝑡𝑂𝐸 the total time exploring both objects. 

 

Hindlimbs clasping behavior 

Hindlimbs clasping behavior is an observational methodology to analyze neurological 

motor deficits in mice (Brooks and Dunnett 2009). For this, mice were held from the tail and 

suspended in the air 3 – 5cm away from the surface about 5min. A healthy physiological response 

was granted to those animals; which reflex was to stretch the limbs away from the central point 

of the body. In counterpart, those mice that legs were curling to the middle-point of the body 

were categorized as clasping behavior. 

 

Beam walk crossing test 

Beam walk test consisted of challenging animals to cross a beam from one extreme to the 

other. The beam was characterized as a wooden round-shaped pole of 1.0cm in diameter and 

70cm in length elevated by 18cm from the ground. In healthy physiological conditions, mice have 

no problems crossing this beam (Schneider et al. 2016). One week before behavioral assessment, 

animals were daily trained for one week, to habituate the animals to the test. After this training 

period, the behavior test was monitored by a digital video camera (Toshiba Camileo 200x) and 

analyzed afterward in a blinded manner.  

The score of this test for each mouse was determined by successfully or failing to cross 

the beam. Animals that stayed on the shaft without walking for more than 30s were also assigned 

as fail. Mice were enforced to pass the pole three times each trial day with 5min intervals 
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between each replicates. The average of the replicates was considered as the final value for 

further analysis of the motor behavior.  

 

Rotarod performance test 

 The rotarod test consisted of challenging mice by placing them on a horizontally oriented, 

rotating cylinder or rod, which is suspended above a chamber. Mice naturally try to stay on top 

of the rod because the distance between the rod and the floor of the chamber is low enough to 

avoid injuries from falling but high enough for the animal to prevent them from dropping 

themselves. The rotation program was set up as within 5 min of the experiment, the speed of 

rotation linearly increased from 5 to 20rpm. As described in the other test, before the behavioral 

assessment, mice were daily trained for one week, to habituate the animals to walk on the 

rotating rod. After this training period, the behavior test was monitored once a week by a digital 

video camera (Toshiba Camileo 200x) and analyzed afterward in a blinded manner. 

By this test, I measured the time to take for the mice to fall from the rod to base. The base 

has a plank that stops the timer after the mice tumble on it. By stopping the timer, it gave us the 

time delay that the animals manage to stay on top of the rod. Rotarod test was performed three 

times per day per animal, and the final value for posterior analysis was taken from the average 

of the replicates. 

 

Statistical analysis 

 All graphs were constructed and analyzed in GraphPad Prism except for the proteomic 

data, which was tested in Perseus. Each figure shows the mean (bar and dots) and the standard 

error of the mean (S.E.M., error bars). Pie charts show the proportion. Every statistical test used 

in our experiments is specified in the figures and the text body of the results.
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Results 

Dynamics of proliferation and differentiation of cortical NG2-glia after VPA in the 

adult mouse brain 

It is well-known that NG2-glia proliferate and differentiate in the physiological adult brain 

(Simon, Gotz, and Dimou 2011; Dimou et al. 2008; Young et al. 2013; Hughes et al. 2013; Dawson 

et al. 2003). Physical activity can modulate both proliferation and differentiation in vivo (Simon, 

Gotz, and Dimou 2011; Tomlinson, Huang, and Colognato 2018). Here, I decided to assess if 

proliferation and differentiation could be modulated through our model of voluntary physical 

activity (VPA), which consist of providing animals free access to running devices. Because animals 

innately and voluntary use the running wheels, we can increase their locomotor activity without 

manipulating them as in the case of forced physical activity models by treadmills. Additionally, I 

tested the dynamics of these processes by analyzing different time points and by removing the 

stimulus after a certain period.  

The experiments were done in C57Bl/6 wild-type mice. II split the mice into three groups: 

1) animals single housed in standard cages without running wheels (“control group”) for two and 

four weeks (n= 3 – 7). 2) Mice single housed in cages with running wheels (“VPA group”) for two 

and four weeks (n = 3 – 7), and 3) Mice single housed with running wheels for two weeks, and 

afterward, transferred to standard cages for two further weeks (“recovery group”, n = 5) (Fig. 

7a). Every group was administered BrdU through the drinking water for the duration of the entire 

experiment (Fig. 7a). After each experiment, mice were sacrificed and brains were obtained, 

sliced, and slices were analyzed by immunostaining. 

In most of our experiments, except when mentioned otherwise, I mainly analyzed the GM 

of the motor cortex (Fig. 7b), a decision made in light of two main premises. First, glucose 

consumption in the rodent motor cortex increases after augmented physical activity (Vissing, 

Andersen, and Diemer 1996), and the regional CBF is enhanced in the human motor cortex after 

exercise (Hiura et al. 2018). The local metabolic demand and CBF boost have been associated 

with an increase in neuronal activity to supply neurons augmented energetic demand. Second, 

the mouse cortical neurons have differential internode distribution, presenting segments of their  
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Figure 7. NG2-glia proliferation and differentiation dynamics after VPA in the C57/Bl6 mouse motor cortex. a) 
Scheme illustrating the experimental protocol. Straight lines indicate mice were housed in standard cages, and 
crooked ones indicate that they were caged with running wheels. Cyan colored lines represent that pure drinking 
water was provided, and purple ones that BrdU was given. The red crosses indicate mice sacrifice time points. Time 
scale: w = weeks. b) Coronal brain slice marking the region (motor cortex highlighted with green), where cell counting 
was performed (bregma: 1.045 to -1.055 mm, modified image from the Allen Institute for Brain Science). c) 
Histological analysis of counterstaining with DAPI (blue), NG2 (green), BrdU (red), and CC1 (white) imaged with 400x 
optic magnification. Scale bar = 50µm. d – d’’) Digital magnification of the square area in panel c showing proliferating 
NG2-glia (white arrow), newly generated oligodendrocytes (yellow arrow), and proliferating cells NG2- and CC1- (red 
arrow). Scale bar = 20µm. e) Quantification of the total number of Ki67+ cells in control (blue) and VPA (red) group. 
f) Quantification of the total number of proliferating cells (BrdU+) after 2 and 4 weeks in control (blue), VPA (red), 
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and recovery (orange) groups. g) Quantification of the total number of proliferating NG2-glia (BrdU+NG2+) after 2 
and 4 weeks in control (blue), VPA (red), and recovery (orange) groups. h) Quantification of the total number of 
newly generated oligodendrocytes (BrdU+CC1+) after 2 and 4 weeks in control (blue), VPA (red), and recovery 
(orange) groups. i) Quantification of the total number of NG2-glia (NG2+ cells) after 2 and 4 weeks in control (red), 
VPA (red), and recovery (orange) groups. In all graphs, bar and error bars represent the group mean and the SEM, 
respectively; and each dot represents a single animal mean (n = 3 - 7). The 2 weeks control vs. 2 weeks VPA data 
were analyzed by a two-tailed unpaired t-test, and all 4 weeks control vs. 4 weeks VP vs. 2+2 weeks (recovery) data 
were analyzed through a two-tailed one-way ANOVA and a post hoc Newman-Keuls multiple comparison test. P < 
0.05 = *, P < 0.01 = **. 

 

axons that remain unmyelinated (Tomassy et al. 2014). Thereby, these exposed segments of the 

axon represent an excellent substrate for new myelin to be allocated. 

Initially, I analyzed whether proliferation was affected by VPA. Hence, I performed 

immunostaining with an antibody against an epitope of Ki67 protein, in which peak expression 

occurs during the cell cycle stages S, G2, and M, Ki67-labeled cells that are actively proliferating, 

albeit, limited to the time point of sacrifice. Already after two weeks of VPA, I observed an  ~4 

fold increase in the number of Ki67+ cells in the VPA compared with the control group (mean ± 

SEM, control: 3.8 ± 2.04 and VPA: 15.12 ± 1.74; two-tailed unpaired t-test p-value = 0.0134) (Fig. 

7e), indicating an increase in proliferation due to VPA.  

To know whether this proliferation was sustained over time and whether VPA stimulation 

was constantly necessary for enhancing this behavior, I provided BrdU for two and four weeks 

and counted the number of BrdU+ cells of control, VPA, and recovery animal groups (Fig. 7a and 

7c). BrdU is incorporated only during the S phase of the cell cycle, which is characterized by the 

synthesis of new DNA. BrdU incorporation has the advantage over other approaches, such as 

Ki67 immunostaining, because it allows quantifying all cells proliferating from the time point of 

BrdU administration until the mice are sacrificed. Because of the way that BrdU incorporates into 

the DNA, the signal is characterized by its smooth round shape and colocalization with a nuclear 

counterstainings, like 4’,6-diamidino-2-phenylindole (DAPI) (Fig. 7d). I found an increase of ~1.2-

fold (Supp. table 1, two-tailed unpaired t-test p-value = 0.0102) and ~1.4-fold (Supp. table 1, 

two-tailed one-way ANOVA, F-value = 5.548,  p-value = 0.0216 followed by Newman-Keuls 

multiple comparisons post hoc test, q-value control vs VPA = 3.594 (statistical analysis was done 

together with the recovery group)) in the VPA group compared to the control, after two and four 
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weeks, respectively (Fig. 7f). These results confirm that VPA promotes proliferation, which is 

dependent on the length of the experience or training. It is important to note that the difference 

between the groups increased over time, which suggests that continuous VPA is necessary and 

has an additive effect. This notion is reinforced after showing that the removal of the running 

wheels for two weeks after two weeks of VPA, abolished the increase in the number of BrdU+ 

cells induced by VPA (Supp. table 1, two-tailed one-way ANOVA, F-value = 5.548, p-value = 0.0216 

followed by Newman-Keuls multiple comparisons post hoc test, q-value control vs. recovery = 

0.9918 and VPA vs. recovery = 4.529 (statistical analysis was done together with the 4w control 

and VPA group)) (Fig. 7f).  

Previous reports have shown that NG2-glia divide in the healthy adult brain, representing 

the major proliferating cell population outside the neurogenic niches (Simon, Gotz, and Dimou 

2011; Young et al. 2013; Kang et al. 2010; Dimou et al. 2008). Thus, to determine whether the 

BrdU+ cells within the oligodendrocyte lineage, I analyzed the colocalization of BrdU with 

antibodies against either NG2 or adenomatous polyposis coli (APC/ CC1) (Fig. 7c and 7d). The 

former is a classic marker for NG2-glia, which, together with BrdU, allows us to estimate the 

number of proliferating NG2-glia. NG2 antibody signal labels NG2-glia cytoplasm which show long 

multi-processes with an isotropic radial distribution (Fig. 7c and 7d). Although pericytes also 

express NG2 (Ozerdem et al. 2001), the characteristic multi-processed morphology of NG2-glia 

(Fig. 7c and 7d) made them easily distinguishable from the enlarged shape of CNS pericytes 

(Ozerdem et al. 2001). On the other hand, CC1 labels exclusively mature oligodendrocytes. The 

antibody targets an epitope of the APC protein, which function is still largely unknown. The CC1 

labeling provides an oval-shaped signal that is localized in the cytoplasm of oligodendrocytes (Fig. 

7c and 7d). CC1 colocalization with BrdU allows us to determine the number of newly formed 

oligodendrocytes since the administration of BrdU (Simon, Gotz, and Dimou 2011; Tomlinson, 

Huang, and Colognato 2018; Gibson et al. 2014; Steadman et al. 2020). This last premise is 

sustained by the fact that oligodendrocytes are postmitotic cells without the ability to divide. 

Therefore, the incorporation of BrdU by a proliferating NG2-glia and subsequent differentiation 

is required to show BrdU+ oligodendrocytes.  
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  I observed that in both the control and the VPA groups most BrdU+ cells were either 

NG2+ or CC1+ (Fig. 7h and 7i), indicating that most proliferating cells are from the oligodendrocyte 

lineage (2w control: BrdU+NG2+ = 81.33%, BrdU+CC1+ = 14.62%, 2w VPA: BrdU+NG2+ = 81.09%, 

BrdU+CC1+ = 21.43%, 4w Control: NG2+BrdU+ = 75.60%, CC1+BrdU+ = 14.11%, 4w VPA: NG2+BrdU+ 

= 72.11%, BrdU+CC1+ = 22.69%, Recovery: NG2+BrdU+ = 71.69%, CC1+BrdU+ = 22.99%). By 

comparing the VPA group to the control group, I observed that there was a significant increase 

in the number of NG2+BrdU+ cells and CC1+BrdU+ cells by ~1.2-fold (Supp. table 1, two-tailed 

unpaired t-test p-value = 0.0336) and ~1.8-fold (Supp. table 1, two-tailed unpaired t-test p-value 

= 0.0071) after two weeks, respectively, and by ~1.4-fold (Supp. table 1, two-tailed one-way 

ANOVA, F-value = 5.63,  p-value = 0.0207 followed by Newman-Keuls multiple comparisons post 

hoc test, q-value control vs. VPA = 3.265 (statistical analysis was done together with the recovery 

group)) and ~2.3-fold (Supp. table 1, two-tailed one-way ANOVA, F-value = 5.634,  p-value = 

0.0207 followed by Newman-Keuls multiple comparisons post hoc test, q-value control vs. VPA = 

4.712 (statistical analysis was done together with the recovery group)) after four weeks, 

respectively (Fig. 7g and 7h). In contrast, the recovery group showed a lower number of 

NG2+BrdU+ cells with respect to the VPA group at four weeks and similar numbers to the control 

group at two and four weeks (Supp. table 1, two-tailed one-way ANOVA, F-value = 5.63, p-value 

= 0.0207 followed Newman-Keuls multiple comparisons post hoc test, q-value control vs VPA = 

3.265 (statistical test was done together with the 4w control and VPA groups)) (Fig. 7g).  

Interestingly, although the number of CC1+BrdU+ cells in the recovery group did not reach 

statistically significant difference compared to the control and the VPA group, the mean was 

located between the control and the VPA group (Supp. table 1, two-tailed one-way ANOVA, F-

value = 5.634,  p-value = 0.0207 followed by Newman-Keuls multiple comparisons post hoc test, 

q-value control vs. recovery = 1.71 and VPA vs. recovery = 3.099 (statistical test was done 

together with the 4w control and VPA group)) (Fig. 7h), and was remarkably similar to the mean 

after two weeks VPA (Supp. Table 1). The results suggest that to keep NG2-glia proliferation and 

differentiation, it is required for the mouse to continuously run, and, along with previous results, 

the longer the running wheels were provided, the more significant was the increase between the 

groups. Nonetheless, from the comparison of the recovery group with the two-weeks VPA group, 
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it is tempting to suggest that the newly generated oligodendrocytes during the VPA remain stable 

over time, in contrast to the proliferating NG2-glia that decreased again. 

 Despite the increase in proliferation, I failed to observe changes in the total number of 

NG2-glia (Supp. table 1, for 2 weeks: two-tailed unpaired t-test p-value = 0.5075. For four weeks: 

two-tailed one-way ANOVA, F-value = 1.534, p-value = 0.2625) (Fig. 7i). This result goes in line 

with previous studies describing that, under physiological conditions, the number of NG2-glia 

always remains constant (Hughes et al. 2013). Therefore, this data hints at the homeostatic 

regulation of the NG2-glia population size, even in the VPA condition. 

A reasonable question arises from these results. Are these changes specific to the motor 

cortex or is VPA globally affecting all brain NG2-glia? To answer the question, I analyzed different 

brain regions after four weeks of VPA (Fig. 8a). I focused our analysis in the corpus callosum (CC) 

ventral to the previously analyzed motor cortex (Fig. 8b) as cortical layer V motor cortex neurons 

project axons within the CC; therefore, it is possible that also in this region NG2-glia are also 

affected after increased physical activity. By now contradictory results have been shown in regard 

to NG2-glia proliferation and differentiation induced by neuronal activity in the CC. On the one 

side, indeed, enhanced neuronal activity of motor cortex neurons by optogenetics increased 

proliferation of NG2-glia in the CC (Gibson et al. 2014). In contrast, NG2-glia behavior does not 

change after VPA at the particular selected time point (McKenzie et al. 2014), which could be 

explained by the different approach to enhance neuronal activity. 

Additionally, I analyzed the piriform cortex (Fig. 8b) for two reasons. Firstly, it has been 

prominently associated with odor information processing, which, to our knowledge at least, does 

not change during physical activity (Hiura et al. 2018). Secondly, I assumed that if VPA 

systematically changes the NG2-glia behavior, their properties should be similar within different 

GM areas in comparison to NG2-glia from a WM region, like the CC (Vigano et al. 2013; Dimou et 

al. 2008; Young et al. 2013). 

Notably, I found no differences in the number of BrdU+ between the control and VPA 

group cells after four weeks either in the CC or in the piriform cortex (Supp. table 1, two-tailed 

unpaired t-test CC: p-value = 0.7237, Piriform Cortex: p-value = 0.6347) (Fig. 8c and 8f) or in the  
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Figure 8. NG2-glia proliferation and differentiation after VPA in C57/Bl6 mouse corpus callosum and piriform 
cortex. a) Scheme illustrating the experimental protocol. Straight lines indicate mice that were housed in standard 
cages, and crooked ones mean that they were caged with running wheels. Cyan colored lines indicate that pure 
drinking water was provided, and purple ones that BrdU water was given. The red cross indicates mice sacrifice time 
point. Time scale: w = weeks. b) Coronal brain slice labeling the regions (bregma = 1.045 to -1.055 mm, corpus 
callosum highlighted in purple and piriform cortex in magenta), where cell counting was performed (modified image 
from the Allen Institute for Brain Science). Panel c and f) Quantification of the total number of proliferating cells 
(BrdU+) after 4 weeks in control (blue), and VPA (red) groups. d and g) Quantification of the total number of 
proliferating NG2-glia (BrdU+NG2+ cells) after 4 weeks in control (blue) and VPA (red) groups. e and g) Quantification 
of the total number of newly generated oligodendrocytes after 2 and 4 weeks in control (blue), and VPA (red) groups. 
In all graphs, bar and error bars represent the group mean and SEM, respectively, and each dot represents a single 
animal mean (n = 4). Data were analyzed by a two-tailed unpaired t-test. 

 



Results 
 

76 
 

total number of NG2+BrdU+ cells (Supp. table 1, two-tailed unpaired t-test CC: p-value = 0.7285, 

piriform cortex: p-value = 0.8211) (Fig. 8d and 8g) nor the total number of CC1+BrdU+ cells (Supp. 

table 1, two-tailed unpaired t-test CC: p-value = 0.6934, piriform cortex:  p-value = 0.7852) (Fig. 

8e and 8h). This result suggests that the changes in NG2-glia behavior are rather region-specific 

and related to local neuronal activity in the motor cortical GM. 

 

Dynamics in indirect and direct NG2-glia differentiation modalities after VPA in the 

adult mouse brain 

 So far, I have shown that VPA increase NG2-glia proliferation and differentiation. Even 

though the quantification of CC1+BrdU+ cells has been widely used for measuring differentiation 

of the oligodendrocyte lineage in vivo (Simon, Gotz, and Dimou 2011; Tomlinson, Huang, and 

Colognato 2018; Gibson et al. 2014; Steadman et al. 2020), it requires that NG2-glia proliferated 

during BrdU administration, and afterward differentiate into oligodendrocytes. This observation 

represents a limitation in our theoretical framework because NG2-glia can differentiate directly 

without transiting through proliferation. Moreover, it has been shown by in vivo time-lapse live 

imaging that NG2-glia do not require initial proliferation to become an oligodendrocyte in the 

adult brain (Hughes et al. 2013; Hughes et al. 2018), at least within the time frame of 40 - 50 days. 

Therefore, the performed experiments can potentially underestimate the total number of newly 

generated oligodendrocytes after VPA (Fig. 9). To clarify this issue, I took advantage of the 

tamoxifen-inducible reporter mouse line NG2-CreERT2 x CAG-GFP that allow us label NG2-glia 

with a GFP reporter and follow their differentiation by colabelling with oligodendrocyte markers 

without the aid of BrdU (Huang et al. 2014; Nakamura, Colbert, and Robbins 2006).  

NG2-CreERT2 x CAG-GFP mice were induced with tamoxifen. Afterward, mice were split 

into two groups: 1) Mice single housed in a standard cage (“control group,” n = 6), and 2) Mice 

housed in cages with running wheels (“VPA group,” n = 9), for six weeks. Control and VPA groups 

were given BrdU the first four weeks, and then it was replaced with regular BrdU-free water for 

the last two weeks before the end of the experiment (Fig. 10a). By immunolabeling against GFP, 

CC1, and BrdU, Ifive cell populations were identified. First, cells that were GFP+CC1+ but BrdU- 
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were classified as “direct newly generated oligodendrocytes” (dNGOLs) (Fig. 10b, white arrows). 

Second, those cells that were GFP+CC1+BrdU+ were classified as “indirect newly generated 

oligodendrocytes” (iNGOLs) (Fig. 10c, yellow arrows). Additionally, I identified a small population 

of CC1+BrdU+ but GFP- cells (Fig. 10d). These cells could correspond to the incomplete 

recombination of NG2-glia in our mouse model. Because this population were labeled for BrdU 

and CC1, they were also classified as iNGOLs (Fig. 10d, cyan arrows). Finally, not surprisingly, two 

populations of cells that were either GFP+BrdU+ but CC1- or GFP+ but BrdU-CC1- were also 

observed. Those were most likely to be proliferating non-differentiated NG2-glia and NG2-glia 

that neither proliferated nor differentiated during this time frame (Fig. 10b – 10d, asterix and 

hashtag), respectively. 

 After quantifying the number of iNGOLs and dNGOLs, I could observe in the control 

condition that the proportion of both direct and indirect differentiation was similar (iNGOLs = 

49.61% vs. dNGOLs = 50.39%) (Fig. 10e and 10f). Notably, after VPA, direct, indirect and total 

differentiation (addition of iNGOLs and dNGOLs) increased by  ~2.4-fold, ~1.5-fold, and ~2-fold, 

respectively, in comparison to the control group (Supp. table 2, two-tailed unpaired t-test 

iNGOLs: p-value = 0.0425, dNGOLs: p-value = 0.0079, total NGOLs p-value = 0.0095) (Fig. 10e). In 

Figure 9. NG2-glia can differentiate into oligodendrocyte by two modalities. In the above part of the 
scheme, NG2-glia can proliferate, incorporating BrdU and then differentiate. This results in 
oligodendrocytes label with BrdU. Because oligodendrocytes are postmitotic cells, they cannot 
incorporate BrdU by themselves. Nonetheless, as shown in the lower part of the illustration, it is possible 
that NG2-glia differentiates directly into oligodendrocyte, resulting in oligodendrocytes, and therefore, 
not labelled with BrdU. 
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 contrast, after VPA, the proportion of direct and indirect differentiation shifted mostly in favor 

of the formation of dNGOLs over iNGOLs (62.30% over 49.61%, respectively) (Fig. 10e and 10f). 

Therefore, it is tempting to think that there is a NG2-glia population exist that is ready to rapidly 

differentiate into oligodendrocytes in response to VPA (dNGOLs). Conversely, there is another 

population that is more resistant to differentiation and first prioritizes self-renewal of the 

population over differentiation. From this experiments, I could confirm that proliferation is not a 

prerequisite for NG2-glia differentiation, which is supported by previous studies (Hughes et al. 

2013; Hughes et al. 2018). 

 From our initial experiments (Fig. 7), differentiation is VPA-duration dependent. The 

longer the animals run, the bigger the difference between control and VPA groups. Nevertheless, 

it is not clear whether the physical activity performance, which I have defined as the distance run 

per unit of time (days or week), within a specific time window had a positive correlation with the 

magnitude of newly generated oligodendrocytes in the animals. Therefore, I correlated NG2-glia 

differentiation from each mouse with its VPA performance. Therefore, I correlated the number 

of indirect, direct, and total NGOLs from each mouse in VPA (XVPA(i)) over the mean number of 

NGOLs in the control group (µ(x)control), and paired it with the number of kilometers per day ran 

by each mouse.  

As expected, I observed that animals that performed poorly had a lower or similar number 

of NGOLs as the control group compared to their high workout counterparts  ( 
X(i)VPA

 µ(x)control
  = 1) (Fig. 

10g). However, to our surprise, already after a threshold of ~1 km per day, differentiation 

reached rapidly a saturation plateau (best-fit values in a hyperbolic function: maximum plateau 

value ±  SEM, dNGOLs: 
X(i)VPA

 µ(x)control
  = 3.15 ±  0.37, iNGOLs: 

X(i)VPA

 µ(x)control
  = 1.58 ±  0.14, and total 

differentiation: 
X(i)VPA

 µ(x)control
  = 2.38 ±  0.26) and differentiation had no correlation to VPA 

performance anymore (analyzed by a linear correlation, dNGOLs: r = 0.5609 and p-value = 0.1161, 

iNOLs: r = 0.3535 and p-value = 0.3507, total differentiation: r = 0.5162 and p-value = 0.1548) 

(Fig. 10g). These results revealed that there is a low threshold that needs to reach the maximum  
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Figure 10.  NG2-glia direct and indirect modalities of differentiation and behavior after VPA in NG2-CreERT2 x CAG-
GFP mouse line. a) Scheme illustrating the experimental protocol. Straight lines indicate mice housed in standard 
cages, and crooked ones indicate that they were caged with running wheels. Cyan colored lines represent that 
normal drinking water was provided, and purple ones that BrdU water was given. Green arrow head shows the time 
point for the induction with tamoxifen, and the red cross indicates time point of sacrifice. Time scale: w = weeks. b-
b’’’), c-c’’’), and d-d’’’) Histological analysis of GFP (green), BrdU (red), and CC1 (white). b shows an example of direct 
differentiation; c and d present examples of indirect differentiation. In mice, it was possible to find only GFP+ (NG2-
glia, hashtag #), GFP+BrdU+ cells (proliferating NG2-glia, asterix *), GFP+CC1+ (dNGOLs, white arrow), GFP+BrdU+CC1+ 
cells (iNGOLs, yellow arrow), and BrdU+CC1+ cells (non-recombined iNGOLs, cyan arrow). Images were taken with 
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400x optic magnification. Scale bar = 20µm. e) Quantification of the total number of newly generated 
oligodendrocytes by an indirect (orange, bar and asterisk), direct (green, bar and asterisk), and both differentiation 
modalities (iNGOLs + dNGOLs, black, asterisk) (n = 6 – 9). Bar and error bars represent the group mean and the SEM, 
respectively. Indirect control vs. indirect VPA, direct control vs. direct VPA, and indirect+direct control vs. both VPA 
data were analyzed by a two-tailed unpaired t-test. P < 0.05 = *, P < 0.01 = **. f) Pie charts show the proportion of 
indirect (orange) and direct (green) differentiation in control and VPA groups. g) Dot plot shows the ratio of each 
VPA mouse over the control mean in indirect (orange), direct (green), and both modalities (red) vs. the average run 
in km per day. Each dot is a single VPA animal. Dashed lines in axis indicate whether running mice had an equal total 
number of any differentiation modality to the control group (y=1). Data analyzed was done by a linear correlation 
and fit a hyperbola function. 

 

differentiation possible by VPA. Nevertheless, the lack of linear correlation suggested that there 

might be a physiological mechanism that negatively regulates the differentiation of NG2-glia, 

restricting the total amount of NGOLs induced by VPA. Hence, two questions were raised in light 

of this evidence. First, do all NG2-glia react identically to VPA, or is there a subpopulation that is 

more prompt to respond to VPA in comparison to the rest of the population? And second, does 

the NG2-glia less reactive to VPA expand and take over the total population after VPA? To tackle 

these questions, I performed a global protein profile description analysis of NG2-glia after VPA. 

 

Proteomic profiling of cortical NG2-glia after VPA by a combined MACS/LC-MS2 

approach 

 To profile and analyze molecular changes of NG2-glia after VPA, I employed a two-step 

approach by specifically obtaining NG2-glia from the adult brain through magnetic-associated 

cell sorting (MACS) together with liquid chromatography-mass spectrometry (LC-MS2), to analyze 

the protein expression from sorted NG2-glia after VPA (Fig. 11a). For these experiments, animals 

from the Sox10-GFP mice were used as in this mouse line, we obtained the highest number and 

purity of sorted cells (Nicole Unger´s doctoral thesis). 

 Sox10-GFP mice were divided into three groups: 1) Mice caged in standard cages (“control 

group,” n = 6), 2) mice were caged with a running wheel for two weeks (“2w VPA group,” n = 6), 

and 3) mice housed with a running wheel for four weeks (“4w VPA group,” n = 6). All animals 

were matched by age (14 – 16 weeks old) at the time of sacrifice. The GM was used in the 

posterior analysis because, as already mentioned, changes of NG2-glia were observed only in this 
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region and not in the WM. Therefore, MACS and mass spectrometry work flow were performed 

according to the scheme in Fig. 4a and described more in detail in material and methods (Fig. 

11a). The number of cells obtained ranged between 5 x 104 – 10 x 104 cells. With this protocol, I 

retrieved and compared the whole population of NG2-glia in the cortical GM against the 

population of NG2-glia that did not differentiate and kept proliferating after VPA, giving us an 

indirect method to identify proteins that might be relevant for differentiation into 

oligodendrocytes (Fig. 12). 

 As a first step, quality assurance of the probes was done by comparing the linear 

correlation of each sample to another by retrieving their Pearson’s Coefficient. The low 

coefficients among samples might indicate high disparities, which are likely due to the 

inadequate processing of the probe. It is crucial to mention that, in this empirical context, the a 

priori assumption was that samples should not differ greatly from each other. By analyzing 

Pearson´s Coefficient among samples, I could observe that the vast majority of the samples had 

a coefficient between ~0.8 - ~0.95 (Fig. 11b). As expected, Pearson's coefficients are higher 

when compared within the same group of probes than with another. However, I observed a 

significant exception in one of the samples from the 2w VPA group (probe 6), whose correlation 

with other samples ranged from ~0.6 - ~0.85, the vast majority being between ~0.6 - ~0.7  (Fig. 

11b). Therefore, the probe was excluded from further analysis. 

 Subsequently, variation in the levels of proteins was determined by a principal 

component analysis (PCA), and the results were plotted showing the two components with the 

highest change (Component 1, Component 2) (Fig. 11c). I could observe that the probes clustered 

in similar areas of the PCA plot, nonetheless, it was evident that the samples within the control 

group showed the greatest variation compared to 2w VPA and the 4w VPA (Fig. 11c). 

Interestingly, PCA suggests that the longer the physical activity, lower was the variation among 

the probes within the same group (Fig. 11c). This data may suggest that increased VPA displaces 

the NG2-glia population to a more homogeneous one and, therefore, reduced variation in their 

molecular profile.  
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Figure 11. Cortical NG2-glia of the cortex protein profile after the VPA Sox10-GFP mouse line. a) Scheme illustrating 
the experimental protocol. b) Linear correlation (Person’s coefficient) comparison among all probes coming from 
control, 2 weeks VPA (2w VPA), and 4 weeks VPA (4w VPA). c) Principal component analysis of the sample. Each dot 
is one probe. d) Volcano plot represents the log10 -(p-value) vs. folds change in 2w VPA and 4w VPA in comparison 
to the control, data analyzed by Perseus software multi comparison t-test (n = 5 - 6). The threshold illustrated by the 
dotted line in the y-axis (p-value = 0.05). The blue dots are single proteins that are upregulated, and red ones are 
the individual proteins that are downregulated. e) Venn diagram shows downregulated (red) and upregulated (blue) 
proteins that overlap between 2w VPA vs. control and the 4w VPA vs. control protein group. 
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To localize specific changes in protein level, I analyzed the global differences between the 

2w VPA and the control group, and 4w VPA and the control group (Fig. 11d). Considering all 

proteins above a cut-off in p-value <0.05, the results showed that after two weeks of VPA, 181 

proteins were upregulated, and 292 proteins were downregulated compared with the control 

group (Perseus multi comparison t-test) (Fig. 11d). After four weeks of VPA, the number of 

proteins upregulated increased to 279 and the proteins downregulated to 440 compared with 

the control group (Fig. 11d). The results show that the increase in VPA duration, increased the 

number of regulated proteins from 513 to 719 (Fig. 11e). Interestingly, by comparing 2w VPA vs. 

control and 4w VPA vs. control, I appreciated that both groups shared 253 regulated proteins of 

which 66 proteins were upregulated, and 187 proteins were downregulated (Fig. 11e). 

Figure 12. Cells obtained after MACS. Here is illustraded NG2-glia obtained before and after VPA (upper and lower 

part of the scheme, respectively). Before VPA, different subpopulations of NG2-glia are in the cortical GM. After VPA, 

NG2-glia differentiate into oligodendrocytes and after MACS, only the cells that did not differentiate are retrieved. 

Afterward, NG2-glia before and after VPA are compared to each other. 
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Figure 13. Functional enrichment categorization of downregulated and upregulated proteins after VPA in the 
Sox10-GFP mouse line. Each functional category (e.g., cellular process, cellular components, and KEGG) has been 
subcategorized in particular global terms (i.e., nervous system development, nitrogen metabolism, etc.). It is shown 
proteins a) exclusively regulated after 2 weeks VPA, b) shared after 2 weeks and 4 weeks VPA, and c) exclusively 
regulated at 4 weeks after VPA. In all graphs, the bar represents the accumulative number of proteins for each global 
term that has been upregulated (blue) and downregulated (red). KEEG database is a collection of manually drawn 
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pathway maps representing our knowledge on the molecular interaction, reaction, and relation networks for 
different pathways including, among others, metabolism, genetic information processing, environmental 
information processing, and cellular processes. 

 

To understand and identify the type of proteins that were regulated by VPA, I took 

advantage of STRING, an open-source database for protein-protein interaction, which also 

processes and classifies these interactions by functional enrichment (Szklarczyk et al. 2019) (Fig. 

13). To facilitate the analysis, I divided the regulated proteins into three groups: 1) Proteins 

categories exclusively regulated after two weeks VPA (Fig. 13a), 2) proteins regulated after both 

two and four weeks VPA (Fig. 13b), and 3) proteins exclusively regulated after four weeks could 

be observed (Fig. 13c). 

Interestingly, functional enrichment showed similarities in downregulated proteins in the 

three groups. The downregulated proteins show that NG2-glia differentiation was affected by 

VPA. For instance, proteins related to cell differentiation, glial differentiation, oligodendrocyte 

differentiation, myelination, and myelin assembly were massively downregulated (Fig. 13b). In 

the same line, cellular component proteins related to myelin were strongly reduced in the three 

groups (Fig. 13a – 13c). Interestingly, only after four weeks of VPA, there were robust changes in 

the metabolism of lipids, such as lipid, and fatty acid metabolism, and long-chain fatty acid 

catabolism (Fig. 13c). 

In addition, the “Kyoto encyclopedia of genes and genomes” (KEGG) database identified 

that fatty acid metabolism and fatty acid biosynthesis-related proteins were downregulated (Fig. 

13c). This shifted metabolism is arguably crucial for oligodendrocyte lineage maturation because 

of the massive cellular membrane expansion that takes place in oligodendrocytes during 

differentiation. Indeed, it has been shown that lipid metabolism proteins are upregulated when 

NG2-glia undergo differentiation into oligodendrocytes (Swiss et al. 2011), whereas impaired 

lipid metabolism in NG2-glia led to impaired proliferation, improper oligodendrocyte maturation, 

and impaired myelination after a WM injury with LPC (Dimas et al. 2019). 

Regarding signaling pathways, I could appreciate that proteins related to the 

phosphoinositide 3-kinases/protein kinase B (PI3k-Akt) and mammalian target of rapamycin 
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(mTOR) pathways decreased after two and four weeks of VPA (Fig. 13b), signaling pathways that 

are vital for the differentiation of NG2-glia into oligodendrocytes (Yang et al. 2015; Bercury et al. 

2014; Zou et al. 2014; Wang, Yang, et al. 2020; Grier et al. 2017). Moreover, I also observed that 

a high number of proteins from the family of GTP-binding proteins known as septins were 

downregulated after two and four weeks of VPA (Fig. 13b). It has been speculated that septins 

might play a role in NG2-glia differentiation (Buser et al. 2009), although the data are so far 

inconclusive. 

Unexpectedly, I found that there was a considerable decrease in the abundance of 

proteins related to synaptic function in the three group (Fig. 13a – 13c). For instance, among 

cellular processes, proteins related to chemical synaptic transmission, regulation of synaptic 

plasticity, and synapse organization were downregulated. In the same line, among cellular 

components, synapse, postsynaptic density, and postsynapse related proteins were reduced (Fig. 

13a – 13c). Furthermore, in the KEGG database, I found that proteins associated with 

glutamatergic synapses and calcium signaling pathways are downregulated (Fig. 13a – 13c). The 

downregulation of these proteins may be specially significant because NG2-glia respond to 

neurotransmitters by increasing [Ca+2]i (Hamilton et al. 2010) and it has been extensively shown 

that NG2-glia form connections with neurons through synapses (Bergles et al. 2000; De Biase, 

Nishiyama, and Bergles 2010). These evidences, together with the downregulation of proteins 

related to the differentiation of NG2-glia, could imply that there is a correlation between 

synapses and NG2-glia differentiation. NG2-glia forming synapses with neurons may differentiate 

rapidly after VPA, leaving undifferentiated cells that have fewer or no connections with neurons. 

Among the upregulated proteins, I could not identify cellular components, processes, or 

signaling pathways that associated with specific features of NG2-glia. The ontology of this 

functional enrichment showed only very general terms as regulation of ribonucleoproteins 

complex, spliceosome, mRNA metabolism, autophagy, RNA splicing, protein metabolism, 

proteolysis, endocytosis, among many others (Fig. 13a – 13c). 

From this protein profiling, it has been shown that the cells that remained 

undifferentiated after VPA have a less prompt to differentiate molecular signature. Therefore, I 
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wondered whether a particular subpopulation of NG2-glia, which was more resistant to produce 

newly generate oligodendrocytes, was overtaking the motor cortex as result of the 

differentiation of NG2-glia population that responded to VPA (Hughes et al. 2013). Indeed, our 

group has previously described such subpopulation of NG2-glia that is uniformly distributed and 

has a much slower differentiation rate, called the GPR17+ NG2-glia (Lecca et al. 2008; Chen et al. 

2009; Boda et al. 2011; Vigano et al. 2016). Hence, I wanted to test whether VPA led to 

enrichment of the GPR17+ NG2-glia subpopulation. 

 

Dynamics of the population of GPR17+ NG2-glia after VPA in the adult mouse brain  

 Given the characteristics of the protein profile, it could be suggested that after VPA, NG2-

glia tends to show a phenotype less prone to differentiate. Therefore, I wondered whether the 

GPR17+ NG2-glia increased their population after VPA and whether these cells respond or not to 

VPA.  

To study the reaction of GPR17+ NG2-glia during VPA, I used the Sox10-GFP mouse line 

and split them into two groups: 1) Mice housed in a standard cage (“control group,” n = 3 at two 

weeks and n = 5 at four weeks), and 2) Mice caged with running wheels (“VPA group,” n = 3 at 

two weeks and n = 10 at four weeks). Under this experimental setup, I proceed to determine the 

total number of GFP+GPR17+ cells after two and four weeks in control or VPA conditions (Fig. 

14a). In this set of experiments, only animals kept for four weeks on VPA were provided BrdU 

(Fig. 14a). The Sox10-GFP mouse line was used to correlate with the results obtained on the 

proteomic profiling and, also, to identify GPR17+ cells quickly with the GFP reporter. As expected 

from previous reports, not all GFP+ cells were GPR17+ (Fig. 14b).  

 I observed that after two weeks of VPA, there was a significant increase of ~2.1-fold in 

the total number of GFP+GPR17+ cells in the VPA group compared with the control group (Supp. 

table 3, two-tailed unpaired t-test p-value = 0.0368) (Fig. 14c). After four weeks of VPA, I 

observed a significant augmentation of ~1.4-fold in the total number of GFP+GPR17+ in the VPA 

group compared with the control group (Supp. table 3, two-tailed unpaired t-test p-value = 

0.0162) (Fig. 14c).  
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Figure 14. GPR17+ NG2-glia behavior after VPA and differentiation in the Sox10-GFP mouse line. a) Scheme 
illustrating the experimental protocol. Straight lines indicate mice housed in standard cages, and crooked ones 
indicate that they were caged with running wheels. Cyan colored lines represent that pure drinking water was 
provided, and purple ones that BrdU water was given. Red cross indicates time point of sacrifice. Time scale: w = 
weeks. b) Histological analysis of GFP (green) and GPR17 (red) imaged with 400x optic magnification. Scale bar = 
50µm. c) Quantification of the total number of GPR17+ NG2-glia (GFP+ GPR17+ cells). Bar and error bars represent 
the group mean and SEM, respectively (n = 3 – 10). Each dot represents a single animal. 2w control vs. 2w VPA groups 
and 4w control vs. 4w VPA groups were independently analyzed by a two-tailed unpaired t-test. P < 0.05 = *. d) Dot 
plot compares the ratio of each running mouse total number of indirect differentiation (GFP+BrdU+CC1+) over the 
control group mean to the ratio of each running mouse total number of GPR17+ NG2-glia (GFP+GPR17+) over the 
control group mean. Dashed lines in axis indicate whether running mice had an equal total number of indirect 
differentiation than the controls (y-axis = 1) and the equivalent total number of GPR17+ NG2-glia than the control 
group (x-axis = 1). Data was analyzed by a linear correlation (P = 0.0097, r = -0.7998) and fit to a linear regression (y 
= -3.444x + 6.923) (n = 8). 

 

I wondered whether the increase of GPR17+ NG2-glia correlated with a lower global 

differentiation in the motor cortex. To test this, after four weeks of VPA, I analyzed the 

correlation between the ratio of the total number of GFP+GPR17+ cells for each mouse with a 

running wheel (Y(i)VPA) over the mean of GFP+GPR17+ cells in the control group (µ(y)control) against 

the ratio of the number of GFP+BrdU+CC1+ cells (iNGOL) for each mouse provided with a running 

wheel (Z(i)VPA) over the mean of GFP+BrdU+CC1+ cells in the control group (µ(z)control) (Fig. 14d). In 

this scenario, a 
Y(i)VPA

µ(y)control
 = 1 indicates no changes in the number of GFP+GPR17+ between 
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individual running mouse and the control mean, and 
𝑍(i)VPA

µ(z)control
= 1 indicates no changes in the 

number of GFP+BrdU+CC1+ cells between each running mouse and the control group mean. 

Interestingly, a negative correlation between the two variables was observed, where animals that 

had more GPR17+ NG2-glia cells, showed the lower number of newly generated oligodendrocytes 

(linear correlation GFP+BrdU+CC1 vs. GFP+GPR17+: r = -0.7998, r2 = 0.6397 and p-value = 0.0097. 

Linear regression equation: y = -3.444x + 6.923) (Fig. 14d). 

 

Differentiation of GPR17+ NG2-glia after VPA in the adult mouse brain 

 As mentioned above, the GPR17+ NG2-glia is characterized by their slow differentiation 

(Vigano et al. 2016). My results have shown that there is an increase the number of GPR17+ NG2-

glia after VPA, therefore, I wondered whether also GPR17+ NG2-glia differentiation increased  in 

response to VPA, resembling their abilities in injury models (Vigano et al. 2016; Boda et al. 2011; 

Lecca et al. 2008). 

 To study the differentiation abilities of GPR17+ NG2-glia, I used the GPR17-iCreERT2 x CAG-

GFP mouse line generated in our group (Vigano et al. 2016). I split the mice into two groups: 1) 

Mice housed in a standard cage (“control group,” n = 3 – 5), and 2) Mice caged with running 

wheels (“VPA group,” n = 3 – 6), and mice were sacrificed in the time points two, four and six 

weeks of VPA (Fig. 15a). 

 Most GFP+ cells were either NG2+ or CC1+, which corroborates that all of these cells are 

part of the oligodendrocyte lineage (Fig. 15b - 15e). Additionally, not all NG2+ were GFP+ (Fig. 15b 

and 15c), reinforcing the heterogeneity of NG2-glia in the brain (Lecca et al. 2008; Boda et al. 

2011; Vigano et al. 2016). I did not observe statistically significant differences in the number of 

GFP+NG2+ between control and VPA groups at any time point (Fig. 15f). but only it appears to be 

a tendency for higher numbers of GFP+NG2+ in the VPA groups than in the control groups (Supp. 

table 4, two-tailed unpaired t-test p-value 2w control vs. 2w VPA = 0.1015, 4w control vs. 4w VPA 

= 0.3272, and 6w control vs. 6w VPA = 0.1891) (Fig. 15f). 
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Figure 15. GPR17+ NG2-glia differentiation behavior after VPA in the GPR17-iCreERT2 x CAG-GFP mouse line. a) 
Scheme illustrating the experimental protocol. Straight lines indicate mice housed in standard cages, and crooked 
ones indicate those caged with running wheels. Cyan colored lines represent indicate that pure drinking water was 
provided instead. Green arrow head shows time point of induction with tamoxifen, and red cross indicates time 
point of sacrifice. Time scale: w = weeks. b – e) Histological analysis of GFP (green), NG2-glia (red), and CC1 (white) 
imaged with 400x optic magnification. b and d scale bar = 50µm. c – c’) and e – e’) digital zoom of the squared area 
in b and d, respectively. Images show GFP+NG2+ cells (white, arrow), GFP-NG2+ cells (yellow arrow), GFP+CC1+ cells 
(magenta arrow), and GFP-CC1+ cells (orange arrow).  Scale bar = 20µm. f) Quantification of the total number of 
recombined GPR17+ NG2-glia (GFP+NG2+ cells). g) The quantification of the total number of newly generated 
oligodendrocytes generated from recombined GPR17+ NG2-glia (GFP+CC1+ cells). All bar and error bars represent the 
group mean, and SEM, respectively. Each dot represents a single animal mean (n = 3 – 6). 2w control vs. 2w VPA 
groups, 4w control vs. 4w VPA groups, and 6w control vs. 6w VPAg groups were independently analyzed by a two-
tailed unpaired t-test. P < 0.05 = *. 
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Regarding the differentiation of GPR17+ NG2-glia, I could observe that some GFP+ cells have 

differentiated into oligodendrocytes (GFP+CC1+) (Fig. 15d and 15e). I could not observe 

differences in the number of GFP+CC1+ cells between control and VPA groups after two or four 

weeks of running (Supp. table 4, two-tailed unpaired t-test p-value 2w control vs. 2w VPA = 

0.8400 and p-value 4w control vs. 4w VPA = 0.7077) (Fig. 15g). Interestingly, after six weeks of 

running, I could appreciate an increase in the number of GFP+CC1+ in the VPA group compare to 

the control group (Supp. table 4, two-tailed unpaired t-test p-value = 0.0130) (Fig. 15g), 

suggesting that GPR17+ NG2-glia are prompted to differentiate after VPA, although, they did it at 

a slower rate or at least in lower numbers compared to the total population of NG2-glia (compare 

Fig. 10e with 15g). These results may suggest that there are subpopulations of NG2-glia that are 

more prone to differentiate in response to VPA than other populations. 

 

Limitations of NG2-glia plasticity after long-lasting VPA 

 I have shown that the number of GPR17+ NG2-glia increased with VPA and, even if these 

cells were capable of responding to VPA, their response to the stimulus had a smaller effect 

compared with the whole NG2-glia population (compare Fig. 10e with 15g). Because the number 

of GPR17+ NG2-glia increased and the proteomic data showed that NG2-glia showed a less prone 

to differentiate phenotype after VPA, it is possible that NG2-glia decreased their response to VPA 

under prolonged periods of stimulus. To test this, I analyzed the long-term effects of VPA in the 

NG2-CreERT2 x CAG-GFP mouse line. Thereby, I divided the animals into three groups: 1) Mice 

housed in standard cages without running wheels for 19 weeks (“control group,” n = 3), 2) Mice 

caged without running wheels for 13 weeks and provided with running devices only the last 6 

weeks before analysis (“6w VPA group,” n = 4), and 3) Mice housed in standard cages provided 

with running wheels for 18 weeks (“Extensive or Ext VPA group,” n = 5) (Fig. 16a). After 12 weeks, 

all animals were induced with tamoxifen. Next, all animals received BrdU, followed by two weeks-

long BrdU retention before they were sacrificed (Fig. 16a). For this experiment, it was essential 

to ensure that all animals were of the same age at the time point of analysis. 
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Figure 16. NG2-glia differentiation after extensive VPA treatment in NG2-CreERT2 x CAG-GFP mouse line. a) 
Scheme illustrating the experimental protocol. Straight lines indicate mice that were housed in standard cages, and 
crooked ones indicate that they were caged with running wheels. Cyan colored lines show that normal drinking water 
was provided, and purple ones that BrdU water was given. Green arrow head shows time point of induction with 
tamoxifen, and red cross indicates time points of sacrifice. Time scale: w = weeks. b) Quantification of total 
differentiation (GFP+CC1+ plus GFP+BrdU+CC1+ plus BrdU+CC1+ cells) in the different conditions. c) Pie charts show 
the proportion of indirect and direct differentiation modality in different conditions. d) Quantification of the total 
number of recombined cells (GFP+ cells) in different conditions. Bars and error bars represent the group mean and 
the SEM Each dot represents a single animal mean (n = 3 – 5). Differences between control vs. 6w VPA vs. Ext VPA 
groups were analyzed by a two-tailed one-way ANOVA and a Tukey’s multiple comparison test as post hoc. e) 
Quantification of the total numbers of total differentiation of young (figure 3g) vs. old mice. Symbol and error bars 
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represent the group mean and SEM, respectively. Each dot represents a single animal mean (n = 3 – 9). Differences 
between young control vs. old control and young VPA vs. old VPA were independently analyzed by a two-tailed 
unpaired t-test. P < 0.05 = * and P < 0.001 = **. 

 

After six weeks of VPA, there was an ~1.6-fold increase in the differentiation of NG2-glia 

(GFP+CC1+, GFP+BrdU+CC1+, and BrdU+CC1+) even in this higher age. By contrast, in the extensive 

VPA group, I failed to find differences in the generation of newly generated oligodendrocytes 

compared with the control group (Suppl. table 5, two-tailed one-way ANOVA F-value = 10.02 and 

p-value = 0.0051 followed by Tukey’s multiple comparisons post hoc test adjusted p-value control 

vs. 6w VPA = 0.0283, control vs. extensive VPA = 0.7933, and 6w VPA vs. extensive VPA = 0.0050) 

(Fig. 16b). When I analyzed the fraction of oligodendrocyte generated by a direct or indirect 

differentiation mechanism, I found that similar to our previous experiment in younger animals 

(compare Fig. 16c with 10f), the 6w VPA showed an increase in the direct differentiation in 

comparison of the control (control: iNGOLs = 44.51% and dNGOLs = 55.49% vs. 6w VPA: iNGOLs 

= 39.24% and dNGOLs = 60.76%) (Fig. 16c). In contrast, I observed that the extensive VPA group 

showed a larger proportion of iNGOLs than the 6w VPA or control group (extensive VPA: iNGOLs 

= 56.87% and dNGOLs = 43.13%) (Fig. 16c). Interestingly, the control group in this set of 

experiments had a higher proportion of NG2-glia undergoing direct differentiation in comparison 

to our previous experiments in the NG2-CreERT2 x CAG-GFP mouse line (compare Fig. 16c with 

10f). These results could be explained by the different ages at the time of analysis. It has been 

shown that proliferation and differentiation of NG2-glia decrease with aging (Dimou et al. 2008; 

Dawson et al. 2003; Young et al. 2013); therefore, the probability of finding both processes to be 

lower in aged animals than in younger ones. 

 A possible explanation to our findings could be that the number of recombined NG2-glia 

after tamoxifen induction was lower in the animals that were subjected to extensive VPA than in 

the 6w VPA and control groups and, therefore, the probability of finding GFP+ oligodendrocytes 

decreased. To test this theory, I counted the number of GFP+ cells in the motor cortex of animals 

from the three studied groups (Fig. 16d). In the case of having a lower recombination rate in the 

extensive VPA group compared with the other groups, I should be able to see less GFP+ cells than 

in the 6w VPA and control animals. However, I did not find statistically significant differences 
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among the three groups (Suppl. table 5, two-tailed one-way ANOVA F-value = 2.897 and p-value 

= 0.1068) (Fig. 16d). The 6w VPA group showed a tendency to increase the number of GFP+ 

compared with the other mice groups, which could be due to the increment of newly generated 

oligodendrocytes already described in this section (Fig. 16b and 16d). 

 Additionally, I observed that the number of newly generated oligodendrocytes in this set 

of experiments was significantly diminished in both control and VPA groups (excluding the 

Extensive VPA group) compared with our previous experiments in the NG2-CreERT2 x CAG-GFP 

mouse line (Fig. 10e) when animals were categorized by the age in which they were sacrificed 

(Supp. table 2 and 5, two-tailed unpaired t-test p-value young mice = 0.0128, p-value older mice 

= 0.0081) (compare Fig. 16c with 10f and 16e). Interestingly, despite the reduction in 

differentiation, I determined that NG2-glia in older mice were also able to differentiate in a 

proportionally equivalent manner. However, it was slightly reduced in older than in younger mice 

(~2-fold in young mice versus ~1.6-fold in old mice) (Fig. 16e). Thus, I suggest that NG2-glia 

plasticity modulated by VPA is retained with age, although the total number of newly generated 

oligodendrocytes is compromised. 

  

Generation and integration of newly generated myelinating oligodendrocytes into 

the circuit after VPA in the adult mouse brain 

 I showed that the differentiation of NG2-glia in the motor cortex increased after VPA. 

Nevertheless, it is not clear whether these newly generated oligodendrocytes myelinate and 

integrate into the local cortical circuitry. It could be possible that differentiated but non-

myelinating oligodendrocytes have a different function that does not involve myelin sythesis. 

Although such a function has not been described so far. Hence, I wanted to determine whether 

newly generated oligodendrocytes turned into myelinating cells. Therefore, I used the NG2-

CreERT2 x CAG-GFP mice and determined the number of GFP+ cells that colocalized with the 

myelin-associated glycoprotein (MAG), a protein that increases its expression in 

oligodendrocytes during the first stages of axonal ensheathment and myelination (Bartsch, 

Kirchhoff, and Schachner 1989). With this methodology, I wanted to determine whether the 
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number of oligodendrocytes that were becoming or were already myelinating axons in the motor 

cortex were integrating into the local circuit.  

 After six weeks, I observed that a proportion of the GFP+ cells were also MAG+ (Fig. 17a – 

17c), indicating that some NG2-glia differentiated and reached full maturity. However, not all 

GFP+ cells were MAG+, meaning that these other cells have either remained NG2-glia or 

differentiated non-myelinating oligodendrocytes (Fig. 17a – 17c). We found that the morphology 

of the MAG+ cells was rather complex (Fig. 17a-17c), showing processes which fully colocalized 

with MAG, suggesting that these oligodendrocytes also developed internode-like structures and 

could integrate into the motor cortex. 

Figure 17. Generation of newly myelinating oligodendrocytes after VPA in NG2-CreERT2 x CAG-GFP mouse line. a 
– c) Histological analysis of GFP (green) and MAG (red) imaged with 630x optical magnification. Image shows 
myelinating oligodendrocytes (GFP+MAG+, white arrow) and NG2-glia / non-myelinating oligodendrocytes 
(GFP+MAG-). Scale bar = 20µm. a – c) Digital magnification of the squared area in panel a. Here it has been highlighted 
in GFP+MAG+ the soma (white arrow head) and the processes/internodes (white border and black core arrow head). 
Scale bar = 20µm. d) Quantification of the total number of newly myelinating oligodendrocyte (GFP+MAG+). Bar and 
error bars represent the group mean and the SEM, respectively. Each dot represents a single animal mean (n = 5). 
Data analyzed by a two-tailed unpaired t-test. P < 0.001 = **. 

 

When I quantified the number of MAG+GFP+ cells, I observed a ~3-fold increase in the 

VPA group compared with the control group (Supp. table 6, two-tailed unpaired t-test p-value = 

0.0068) (Figure 17d), suggesting that newly generated oligodendrocytes matured in the motor 

cortex at a higher or faster degree. Because of the nature of the NG2-CreERT2 x CAG-GFP mouse 

line, it was vital to confirm that this signal was specific, and therefore, I analyzed whether 
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MAG+GFP+ colocalized with NG2-glia markers, such as NG2. As expected, MAG+GFP+ cells did not 

express NG2, and conversely, GFP+ cells positive for NG2 labelling were not MAG+ (Figure 18a – 

18d). Thus, I confirmed the specificity of the MAG label and that they were cells more 

differentiated within the oligodendrocyte lineage.  

Figure 18. NG2-CreERT2 x CAG-GFP mouse shows recombinant NG2+ and MAG+ cells. a – d) Immunofluorescence 
of GFP (green), MAG (red), and NG2 (white) was taken with 400x optical magnification. Scale bar = 20µm. After 
recombination, it is possible to appreciate GFP+ cells colocalize with NG2 (GFP+NG2+ cells, yellow arrows) and MAG 
(GFP+MAG+ cells, white arrow). 

 

Finally, I evaluated whether the increase in myelinating oligodendrocytes was an overall 

occurrence in the motor cortex, or it was layer-specific. This distinction could be important 

because the distribution of myelinating oligodendrocytes could reveal subtle changes in the 

cortical remodeling, perhaps involving particular layers. Thus, I divided the motor cortex into 

three equal sized “bins” (Fig. 19a, and 19b) and counted the total number of MAG+GFP+ cells in 

each bin. I observed that  the total number of GFP+MAG+ cells increase of ~3.4-fold in bin 1, ~1.8-

fold in bin 2, and  ~5-fold in bin 3 in the VPA group compared with the control group. Although 

the differences in bin 2 did not reach statistical significance, there was a clear trend in the 

increase of the total number of newly myelinating oligodendrocytes in the VPA group compared 

with the control group (Supp. table 6, two-tailed unpaired t-test control vs. VPA in bin1 p-value 

= 0.0154, bin2 p-value = 0.0552, bin3 p-value = 0.0017) (Fig. 19c). Therefore, I can conclude that 
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that maturation of oligodendrocytes happens globally in the motor cortex after VPA, probably 

promotes overall remodeling in the motor cortex circuitry. 

Figure 19. Distribution of newly generated myelinating oligodendrocytes in the motor cortex of the NG2-CreERT2 
x CAG-GFP mouse. a and b) Cortical column of the motor cortex immunostaining of GFP (green) and MAG (red). 
Images were taken with 400x optical magnification. Scale bar = 100µm. Images were independently taken from 
different regions for posterior stitched to form the column. In b, it is shown how the cortex was divided into three 
identical areas or bins. c) Quantification of the total number of newly generated oligodendrocytes (GFP+MAG+) per 
bin and in control or VPA condition. Bar and error bars represent the group mean and SEM, respectively. Each dot 
represents a single animal mean (n = 5). Differences between bin1 control vs. bin1 VPA, bin2 control vs. bin 2 VPA, 
and bin3 control vs. bin 3 VPA groups were independently analyzed by a two-tailed unpaired t-test. P < 0.05 = * and 
P < 0.001 = **. 

 

Genetic ablation of proliferating NG2-glia as a model for blocking their differentiation, 

and its effects in the locomotor activity of adult mice 

Previous studies have shown that exercise increases the cognitive performance (Hillman, 

Erickson, and Kramer 2008). Initially, researchers attributed this enhanced cognition to an 

increased neurogenesis in the hippocampal dentate gyrus (DG) (van Praag et al. 1999; Olson et 

al. 2006; Diederich et al. 2017; Voss et al. 2019). Robust evidence has shown that these newly 

generated neurons have the capability to integrate into the existing hippocampal circuitry, 

leading to the augmented performance of cognitive processes, such as learning and memory (van 

Praag et al. 1999; Olson et al. 2006; Diederich et al. 2017; Voss et al. 2019). Nevertheless, to our 
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knowledge, it has never been studied how NG2-glia differentiation enhancement due to physical 

activity might contribute to improving cognitive performances. 

Figure 20. Locomotor activity after genetical ablation of proliferating NG2-glia and decreasing differentiation in 
the Sox10-iCreERT2 x Esco2-fl x CAG-GFP mouse under various conditions. a) Scheme illustrating the experimental 
protocol. Straight lines represent mice that were housed in standard cages, and crooked ones show that they were 
caged with running wheels. Cyan colored lines represent normal drinking water was provided, and magenta ones 
that EdU water was administered. Green arrow head show time point of induction with tamoxifen, and red cross 
indicatetime points sacrifice. Time scale: w = weeks. b) The quantification and comparison of the weekly running 
performance of Sox10-Esco2wt/wt (blue) and Esco2flx/flx (red) mice. Dots and error bars represent the group mean and 
the standard error of the mean, and light-colored lines indicate the individual performance of each mouse (n = 8 – 
9). Differences between Esco2wt/wt and Esco2flx/flx were analyzed by a two-way ANOVA. c) The bar graph shows the 
quantification of the average distance traveled by both genetic conditions. Bars and error bars represent the group 
mean and the SEM, respectively. Each dot represents a single animal mean (n = 8 – 9). Differences between genetic 
backgrounds between Esco2wt/wt and Esco2flx/flx were analyzed by a two-tailed unpaired t-test. d) Total distance 
traveled and e) speed during the arena exploration in the different conditions. Dots and error bars represent the 
group mean and SEM, respectively (n = 7 – 10). Differences among conditions were determined by a two-way 
ANOVA. 
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So far, I have identified that there is a massive augmentation in the differentiation of NG2-

glia in the motor cortex after VPA (Fig. 7). Furthermore, these cells appear to mature to form 

myelin, and might integrate into the local circuitry of the motor cortex (Fig. 18d and 19c). 

Nonetheless, it has not been clarified whether these cells have a relevant function for 

information processing.  

 To address this question, I took advantage of the Sox10-iCreERT2 x Esco2-fl x CAG-GFP  

mouse line (from now on, Sox10-Esco2wt/wt as control and Sox10-Esco2flx/flx for ablated NG2-glia 

model), which was already described by our group (Schneider et al. 2016). Similar to other Cre-

lox systems described above, this mouse line has a Cre-driver under the promoter of Sox10, 

leading to the deletion of the Esco2 protein in the whole oligodendrocyte lineage after tamoxifen 

treatment (Schneider et al. 2016). The deletion promotes active apoptosis in recombined cells 

attempting to proliferate, which subsequently triggers the reduction of NG2-glia differentiation 

as a collateral effect (Schneider et al. 2016; Fard et al. 2017). It is believed that the reduction in 

oligodendrocytes is due to the shift cells from differentiating to proliferating in order to keep the 

NG2-glia population size stable.  

I used the Sox10 Cre-driver line for two main reasons. Firstly, I obtained a high 

recombination rate of NG2-glia, about ~80% of the total number of NG2-glia (Schneider et al. 

2016). Secondly, albeit also oligodendrocytes are recombined, it was assumed that only NG2-glia 

are affected because oligodendrocytes are postmitotic cells. Hence, they do not proliferate; ergo, 

they do not undergo apoptosis. Although Esco2 may have other functions, these have not been 

demonstrated in our knowledge (Schneider et al. 2016). Thus, I used the Sox10-iCreERT2 x Esco2-

fl x CAG-GFP as a model to block differentiation during VPA. 

 Mice were induced with tamoxifen and kept for two weeks, to ensure the deletion of the 

Esco2 protein (Schneider et al. 2016). Then, mice were split into four groups: 1) Sox10-Esco2wt/wt 

(n = 10) and 2) Sox10-Esco2flx/flx (n = 7) mice, which were housed in standard cages, as well as 3) 

Sox10-Esco2wt/wt (n = 8) and 4) Sox10-Esco2flx/flx (n = 8) mice, which were housed in cages provided 

with running devices (Fig. 20a). After six weeks running (and eight weeks post-induction), I tested 

the enhancement of long-term memory by using the NOR test based on Leger et al. (2013) (Fig. 
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20a) as this test shows enhancement  in the performance of C57Bl/6 mice after prolonged 

exercise (Robison et al. 2018). 

 Our NOR protocol had a duration of 5 consecutive days (Fig. 20a). The first three days 

consisted of a habituation phase, in which animals were exposed to the empty arena for 10 min 

twice per day, separated by 6h. On the following day, I performed an object familiarization phase 

for 10min, in which the mice were exposed to two identical objects separated by ~16cm. On the 

last day, one of the familiar objects was replaced with a novel object, allowing the mouse to 

explore them for 10min (Fig. 20a).  

 The Sox10-Esco2flx/flx, either housed in standard cages or with running wheels, showed 

normal behavior after eight weeks post-induction. Nevertheless, it has been described before 

that some animals might show motor deficits when challenged to walk on a beam or to walk over 

a metallic grid mesh (Schneider et al. 2016). Thus, to discard that possible changes in the 

exploration behavior were not due to problems in locomotion, I weekly compared the running 

performance between the Sox10-Esco2wt/wt and Sox10-Esco2flx/flx mice. I observed no statistically 

significant difference in the average running performance per week (Supp. table 7, each day was 

analyzed by a two-tailed unpaired t-test p-value week 1 = 0.25, week 2 = 0.0646, week 3 = 0.2352, 

week 4 = 0.0566, week 5 = 0.6602, and week 6 = 0.4481) (Fig. 20b). Additionally, I could not find 

significance differences in the average distance per day (Supp. table 7, two-tailed unpaired t-test 

p-value = 0.2106) (Fig. 20c). It is important to note that Sox10-Esco2flx/flx mice, on average, tended 

to run less than Sox10-Esco2wt/wt mice (Fig. 20c). Nonetheless, every mouse ran over the 

previously determined threshold of 1Km per day, which was established as necessary to induce 

newly generated oligodendrocytes in the motor cortex (Fig. 10g). Therefore, these slight 

differences in running performance should not affect the overall differentiation of NG2-glia in 

the mice of both genotypes. 

 To further analyze and discard locomotion impairment during the NOR, I quantified the 

total distances traveled and the speed of the mouse during the habituation phase (Fig. 20d and 

20e, respectively). During habituation, animals were free to explore the arena without any 

objects within it. This approach represents a useful measurement because if mobility is 
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deteriorated, the animals from the Sox10-Esco2flx/flx groups should show less exploration of the 

arena than their Sox10-Esco2wt/wt counterparts. Each habituation day (X) was executed twice, 

consisting of an earlier session X.1 and a 6h later session X.2. After analyzing the mouse path 

automatic tracking, I did not observe statistically significant differences between VPA and no VPA 

Sox10-Esco2wt/wt, and VPA and no VPA Sox10-Esco2flx/flx mice, either in the total distance traveled 

(Suppl. table 9, each session was analyzed by two-way ANOVA interaction p-value = 0.1449) (Fig. 

20d) or the average speed (Suppl. table 9, each session was analyzed by two-way ANOVA 

interaction p-value = 0.1093) (Fig. 20e). Thus, I concluded that any differences in object 

exploration could not be explained by motor deficits. 

 

Genetic ablation of proliferating NG2-glia, as a model for blocking their 

differentiation, and effects in cognitive performance of adult mice 

After confirming that the locomotor activity of Sox10-Esco2flx/flx mice was not impaired by 

the genetic ablation of proliferating NG2-glia, I proceeded to test the changes in cognitive 

performance of these mice. Therefore, I presented the animals to the familiar objects, to 

familiarize the mice (Fig. 20a) and simultaneously tested whether mice have a preference for any 

of the two regions where the objects were located. As I described in the material and methods 

section, the set of familiar and novel objects and their placement were selected randomly to 

reduce the probability that results were due to object side or object itself preference. 

After the familiarization phase, I observed that animals explored the same amount of time 

both objects (Supp. table 9, each group was analyzed by a two-tailed paired t-test p-value for No 

VPA Sox10-Esco2wt/wt = 0.1849, No VPA Sox10-Esco2flx/flx = 0.4225, VPA Sox10-Esco2wt/wt = 0.3653, 

and VPA Sox10-Esco2flx/flx = 0.9066) (Fig. 21a). Therefore, I concluded that there was no 

statistically significant side preference. After 24h of retention, I replaced one of the familiar 

objects with a novel one. I could observe that all groups were able to discriminate the novel 

object from the familiar object (Supp. table 10, each group was analyzed by a two-tailed paired 

t-test p-value for No VPA Sox10-Esco2wt/wt = 0.0019, No VPA Sox10-Esco2flx/flx = 0.0044, VPA 

Sox10-Esco2wt/wt = 0.0001, and VPA Sox10-Esco2flx/flx = 0.0224) (Fig. 21b), which indicates that 
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baseline learning and memory consolidation is not affected by the deletion of Esco2 in the 

oligodendrocyte lineage. This point was very important for my work because I wanted to find out 

whether NG2-glia differentiation was important for enhanced cognitive performance induced by 

increased physical activity and not for the physiological capacity of learning and memory. 

Figure 21. Cognitive performance after genetical ablation of proliferating NG2-glia and decreasing differentiation 
in the Sox10-iCreERT2 x Esco2-fl x CAG-GFP mouse under different conditions. a) Time spent by mice in object 
exploration in different conditions during the familiarization phase. b) Time spent by mice in object exploration in 
different conditions after replacing one familiar object with a novel one. Bars and error bars represent the group 
mean and SEM, respectively. Each dot represents a single animal mean (n = 7 – 10) Dash line indicates that time 
spent between both objects were equal (y-axis = 10). Differences between the exploration of the left object vs. the 
right object (familiarization phase) and the novel object vs. familiar object (novel object phase) for each condition 
were individually analyzed by a two-tailed paired t-test. c) Bar graph with the calculated recognition index for each 
condition. Bars and error bars represent the group mean and SEM, respectively. Each dot represents a single animal 
mean (n = 7 – 10). Differences among conditions were determined by a two-way ANOVA and a Tukey’s multiple 
comparison test as post hoc. P < 0.05 = *, P < 0.01 = **, and P < 0.001 = ***. 

 

To analyze enhanced memory performance, I compared the recognition index (RI) of each 

group among the groups. RI is the ratio of time spent exploring the novel object substracted by 

the time spent with the familiar object over the total time spent exploring both objects (see 

material and methods). Interestingly, I observed that VPA improved the Sox10-Esco2wt/wt mice 

test performance by ~2 fold in comparison to their counterparts with the same genetic 

background, which were housed in standard cages (Fig. 21c). Albeit, VPA could not improve the 

recognition index for Sox10-Esco2flx/flx mice, which were caged with running devices, in 

comparison to their respective control group, housed in standard cages (Supp. table 9, two-way 

ANOVA interaction p-value = 0.0302 followed by Tukey’s multiple comparisons post hoc test 

adjusted p-value No VPA Sox10-Esco2wt/wt vs. VPA Sox10-Esco2wt/wt = 0.0343, No VPA Sox10-
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Esco2wt/wt vs. No VPA Sox10-Esco2flx/flx = 0.9996, No VPA Sox10-Esco2wt/wt vs. VPA Sox10-

Esco2flx/flx = 0.9340, VPA Sox10-Esco2wt/wt vs. No VPA Sox10-Esco2flx/flx = 0.0473, VPA Sox10-

Esco2wt/wt vs. VPA Sox10-Esco2flx/flx = 0.0128, and No VPA Sox10-Esco2flx/flx vs. VPA Sox10-

Esco2flx/flx = 0.9707) (Fig. 21c). Altogether, these results suggest that reducing the differentiation 

of NG2-glia did not affect baseline learning and memory consolidation. Nevertheless, the 

prevention of augmented newly generated oligodendrocytes, and subsequent myelination by 

VPA, abolishes cognitive enhancement driven by VPA, highlighting the importance of 

oligodendrocytes formation for changes in the CNS remodeling. 

 

Genetic ablation of proliferating NG2-glia, as a model for blocking their 

differentiation, and adult neurogenesis in the mice 

 Previous results showed the importance of the differentiation of NG2-glia for the 

remodeling of the CNS for enhanced cognition in increased physical activity conditions. Albeit, as 

mentioned above, many studies show that increased physical activity leads to enhanced 

neurogenesis in DG, modifying the hippocampal local circuitry, which might contribute to the 

increased performance in learning and memory (van Praag et al. 1999; Olson et al. 2006; 

Diederich et al. 2017; Voss et al. 2019; Wu et al. 2008). For years, this mechanism has been 

thought to be responsible for the enhancement of cognitive processes by exercise. Henceforth, 

it is necessary to rule out that, in our Sox10-iCreERT2 x Esco2-fl x CAG-GFP mice, the Esco2 deletion 

of the oligodendrocyte lineage affected normal and activity-enhanced neurogenesis. In the same 

line, NG2-glia are also widely distributed in the mouse hippocampus, where they can proliferate 

and differentiate (Dawson et al. 2003). Therefore, NG2-glia may play  a role in neurogenesis and 

it is reasonable to think that the newly generated oligodendrocytes provide metabolic support 

to neuroblasts, improving their chances of survival (Funfschilling et al. 2012; Klugmann et al. 

1997; Lappe-Siefke et al. 2003; Lee, Morrison, et al. 2012; Biebl et al. 2000; Kempermann et al. 

2003). 

To analyze whether neurogenesis is affected in the Sox10-iCreERT2 x Esco2-fl x CAG-GFP 

mice, EdU was provided through the drinking water for two weeks prior to starting of the NOR 
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test (Fig. 20a). After NOR, immunolabelling for doublecortin (DCX), a microtubule-associated 

protein expressed in neuroblast, and staining for EdU, a proliferation marker, was performed. As 

for BrdU, EdU is incorporated in the S phase of the cell cycle. The main difference resides in the 

detection method with EdU, being antibody-independent. I observed that Most EdU and all DCX 

signal was restricted to the subgranular zone and granular layers of the DG (Fig. 22a – 22d). 

Figure 22. Neurogenesis after genetical ablation of proliferating NG2-glia and decreasing differentiation in the 
Sox10-iCreERT2 x Esco2-fl x CAG-GFP mouse line in different conditions. a - d) Histological analysis of hippocampal 
dentate gyrus immunostaining of DCX (red) and EdU (white) imaged with a 400x magnification lens and posteriorly 
stitching individual images. Scale bar = 100µm. a’ – d’) Analog magnification in the squared area in a – d, respectively, 
taken with 630x optical magnification. Scale bar = 20µm. f) The quantification of the total number of newly born 
neurons (DCX+EdU+ cells) in different conditions. Bars and error bars represent the group mean, and the SEM, 
respectively. Each dot represents a single animal mean (n = 3 - 5). Differences among conditions were determined 
by a two-way ANOVA and a Tukey’s multiple comparison test post hoc. P < 0.05 = *, P < 0.01 = **, and P < 0.001 = 
***. 
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EdU signal, as in the case of BrdU immunostainings, was round-shaped and restricted to 

the nucleus (Fig. 22a – 22d), whereas the DCX label showed a somatic distribution with single or 

few processes projecting outwards the hippocampal DG hilus (Fig. 22a – 22d). These processes 

branched into one or two smaller processes (Fig. 22a – 22d). It is possible to see some of the EdU 

signal outside the subgranular and granular layer of the DG, which was not the case for the DCX 

signal (Fig. 22a – 22d).  

It was possible to observe, in qualitative term, that VPA increased the number of EdU+ 

nuclei in the subgranular zone in both Sox10-Esco2wt/wt and Sox10-Esco2flx/flx (compare Fig. 22a 

with 22c and Fig. 22b with 22d, respectively). This increase in proliferation has been described 

in previous works (van Praag et al. 1999; Olson et al. 2006; Diederich et al. 2017; Voss et al. 2019; 

Wu et al. 2008). Another evident feature was that VPA lead to an increased growth and branching 

of DCX+ neurons’ processes in both Sox10-Esco2wt/wt and Sox10-Esco2flx/flx after VPA (compare 

Fig. 22a with 22c and Fig. 22b with 22d, respectively) with no apparent differences when 

comparing the two control or the two VPA groups. It has been shown that increased physical 

activity results in an increased complexity of the neuroblasts morphology (O'Leary et al. 2019).  

To quantify neurogenesis, I counted the number of proliferating neuroblasts, identified 

as DCX+EdU+ cells. Both Sox10-Esco2wt/wt and Sox10-Esco2flx/flx mice showed increased after VPA 

by ~2,3-fold, and ~1,6-fold, respectively, and no statistically significant difference could be 

observed between the two control or the two VPA groups (Supp. table 10, two-way ANOVA 

interaction p-value = 0.1377 and physical activity condition p-value < 0.0001 followed by Tukey’s 

multiple comparisons post hoc test adjusted p-value No VPA Sox10-Esco2wt/wt vs. VPA Sox10-

Esco2wt/wt = 0.0005, No VPA Sox10-Esco2wt/wt vs. No VPA Sox10-Esco2flx/flx = 0.4418, No VPA 

Sox10-Esco2wt/wt vs. VPA Sox10-Esco2flx/flx = 0.001, VPA Sox10-Esco2wt/wt vs. No VPA Sox10-

Esco2flx/flx = 0.0077, VPA Sox10-Esco2wt/wt vs. VPA Sox10-Esco2flx/flx = 0.8716, and No VPA Sox10-

Esco2flx/flx vs. VPA Sox10-Esco2flx/flx = 0.0183) (Fig. 22f). Thus, I concluded that NG2-glia ablation 

did not impair physiological or exercise-induced neurogenesis, or it does not change the circuitry 

remodeling of DG mediated by the newly generated neurons promoted by VPA. 
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Genetic deletion of Shank3 in the oligodendrocyte lineage and the role of synapses 

in NG2-glia differentiation in the adult mice 

 Nowadays, there is evidence that neuron-Ng2-glia synapses might allow NG2-glia to 

monitor neuronal activity, which in turn could regulate proliferation and differentiation of NG2-

glia (Yuan et al. 1998; Chen et al. 2018; Gautier et al. 2015; Lundgaard et al. 2013). Nonetheless, 

evidence regarding their function has been, at best, mixed.  From our results, simultaneous 

downregulation of pro-oligodendrogenesis and synaptic proteins suggest that they might play a 

role in the differentiation of NG2-glia.  

I have proposed to target other possible players in synapse formation, maintenance, and 

function. Therefore, I thought that targeting synaptic scaffold proteins might clarify this issue.  In 

this thesis, I will set a special focus on the Shank3 scaffold protein, which has been shown to be 

highly expressed in NG2-glia (Zhang et al. 2014).  

Shanks3 is a novel scaffold protein family that has a relevant role in the assembly of the 

postsynapse (Naisbitt et al. 1999; Kreienkamp 2008; Tu et al. 1999) and its deletion leads to a 

decrease in the number of synapses, impairment in the expression and activity of glutamatergic 

receptors, and an autistic-like behavior in mice (Arons et al. 2012; Schmeisser et al. 2012). 

Furthermore, haploinsufficiency, caused by deletions of or mutations in Shank3, has been 

associated with the Phelan-McDermid syndrome, a rare monogenic neurodevelopmental 

disorder within the autism spectrum disorders (ASD), which is characterized by profound 

intellectual disability, hypotonia (decreased muscle tone), gait and motor deficits, and delayed 

or absent speech, among others (De Rubeis et al. 2018; Wilson et al. 2003; Durand et al. 2007). 

A recent MRI study has shown that mice and Phelan-McDermid human patients with mutations 

in Shank3 have severe WM alteration (Jesse et al. 2020). Thus, mutations in Shank3 may impair 

the function of neuron-glia synapses, decreasing the differentiation of NG2-glia and, finally, 

leading to the reduction of myelin distribution and alteration in the WM.  

To study this, I created the Sox10-iCreERT2 x CAG-GFP x Shank3-fl (Shank3wt/wt refers to 

the control and Shank3flx/flx to the mutant) by crossing our Sox10-iCreERT2 x CAG-GFP mice with 

the Shank3-fl mouse line (kindly provided by Prof. Dr. Tobias Böckers, Ulm Universität) (Fig. 23a).  
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Figure 23. Generation of the Sox10-iCreERT2 x Shank3-fl x CAG-GFP mouse line. a) Scheme illustrating different 
mouse lines paired (X) to generate our novel mouse line. Sox10-iCreERT2 mouse line contains the Sox10 as the 
promoter sequence, and iCreERT2 is the sequence for the modified, improved Cre-recombinase fused with the 
human-estrogen ligand-binding domain. CAG-GFP mouse line contains the CMV promoter, a stop codon flanked by 
two loxp sites (inverted triangle), and a GFP reporter sequence. Shank3-fl mouse has the exon (ex) 11 flanked by two 
loxp sites (inverted triangles). b) The genotype of the mouse line confirming the presence of different transgenes. c 
and d) Histological analysis of GFP (green) without (-) and with (+) tamoxifen administration imaged with a 100x 
optical magnification and posterior stitching individual images. Scale bar = 500µm. e - e’’’’) Immunostaining of GFP 
(green, yellow arrows), NeuN (red), and Olig2 (white) imaged with 400x optical magnification. Scale bar = 20µm. f - 
f’’’’) Immunostaining of GFP (green, yellow arrows), GFAP/S100β (red), and Iba1 (white) imaged with 400x optical 
magnification. Scale bar = 20µm. 

 

In this mouse model, I expressed GFP and induce the deletion of Exon11 of the Shank3 gene after 

tamoxifen administration and specifically in the oligodendrocyte lineage (Fig. 23a). Additionally, 

I assumed that the deletion of Shank3 would affect only NG2-glia and not oligodendrocytes due 
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to the lack of synapses described for the latter. To confirm the presence of the different genes in 

this novel mouse line, I performed a genomic PCR for GFP, Sox10-iCreERT2, and the Shank3 genes 

(Fig. 23b). I observed that the GFP and the Sox10iCre bands were presented in all the mutant 

lines and absent in the wild-type control (Fig. 23b). Additionally, I found that the wildtype form 

of Shank3 could be found in the homozygous wildtype Shank3, heterozygous, and wildtype mice 

but not in the homozygous floxed Shank3 animals, which expressed only the floxed Shank3 form 

of the gene (Fig. 23b). 

Figure 24. Expression of Shank3 protein in the Sox10-iCreERT2 x Shank3-fl x CAG-GFP mouse. a) Histological analysis 
of GFP (green) and Shank3 (white) imaged with 630x optical magnification. Scale bar = 10µm. b and b’) Digital zoom 
of squared area b in panel a. Scale bar = 10µm. c – c’’’’) Digital zoom of a single Z plane located in the squared area 
c of panel a. Additionally, qualitative colocalization analysis between GFP and Shank3, and between Shank3 and 
Bassoon (red). Scale bar = 1µm. 

 

Next, I checked whether the oligodendrocyte lineage was recombined and only after 

tamoxifen administration. I compared the expression of GFP in the adult brain with and without 

tamoxifen administration. After induction, I observed that GFP reporter was only expressed in 

the animals treated with tamoxifen (Fig. 23c and 23d). Finally, I assessed whether expression of 

the GFP reporter was restricted to the oligodendrocyte lineage or it was also expressed in other 

cell types. Thus, we analyzed the colocalization of GFP (Fig. 23e and 23f, yellow arrows) with 

various identity markers, such as Olig2 (for the oligodendrocyte lineage), NeuN (neuronal 
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marker), GFAP combined with S100ß (astrocyte marker), and Iba1 (microglia marker) (Fig. 23e 

and 23f). I observed that GFP was always in Olig2+ cells. Thus, I concluded that the novel mouse 

line was recombining only after induction with tamoxifen, and the induced mutation 

recombination would exclusively affect the oligodendrocyte lineage. 

So far, the expression of Shank3 in NG2-glia has only been shown at the mRNA level 

(Zhang et al. 2014). Hence, I decided to check the presence of Shank3 protein by 

immunolabelling. In the mouse brain cortex, Shank3 was broadly expressed as a punctated signal 

(Fig. 24a and 24b). By colocalizing with the GFP reporter, it was observed several of these puncta 

distributed in the soma and processes of NG2-glia (Fig. 24b), resembling the distribution reported 

in neurons (Arons et al. 2012); therefore, Shank3 may also be part of NG2-glia neuron-NG2-glia 

synapses. Furthermore, by single plane analysis, I observed that some of the Shank3 puncta 

colocalized with bassoon, a neuronal presynaptic marker, suggesting that Shank3 is also part of 

the molecular structure of the NG2-glia synapse (Fig. 24c). 

To test a possible role of Shank3 in the oligodendrocyte lineage, I induced the mice with 

tamoxifen. At 12 weeks post-induction, I performed motor behavioral test with these mice. First, 

mice were trained in the beam walk crossing and the rotarod for a week. Later, on weekly basis, 

the behavior was assessed, and then animals were sacrificed (Fig. 25a).

Before the training in the motor tasks, I analyzed neurological deficits by checking for 

clasping. In the physiological condition, mice stretch laterally their hind limbs, as is shown by the 

Shank3wt/wt mouse (Fig. 25b). Nonetheless, the Shank3flx/flx mouse showed hind limb clasping (Fig. 

25c), a response that has been observed in other mouse models of ASD (Schmeisser et al. 2012; 

Gemelli et al. 2006) and motor disorders (Auerbach et al. 2001). Furthermore, I observed that 

the Shank3flx/flx mouse performed considerably worse, and in a progressive fashion, than its 

control counterparts in the beam walk crossing (Supp. table 11 and Fig. 25d) and in the rotarod 

test (Supp. table 12 and Fig. 25e). Our group have shown that the blocking NG2-glia 

differentiation leads to motor impairment (Schneider et al. 2016). Therefore, deletion of Shank3 

may trigger aberrant function of neuron-NG2-glia synapses that are followed by decreased 

oligodendrogenesis, resulting finally in motor deficits. It is necessary to mention that these 
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results are still preliminary, and understanding the pathophysiology of this new mouse novel will 

require more research. Nonetheless, this mouse model could be useful in the future to 

understand the role of neuro-NG2-glia synapses in development and adulthood, in experience-

driven changes of NG2-glia behavior and the role of NG2-glia communication in neurological 

pathologies, such as ASD. 

Figure 25. Motoric behavior assessment in the Sox10-iCreERT2 x Shank3-fl x CAG-GFP mouse. a) Scheme illustrating 
the experimental protocol. The red-colored line reflects the training period in both motor tasks and dark blue lines 
during the period of behavioral assessment. Green arrow head shows time point of induction with tamoxifen, and 
red cross indicate time points of sacrifice. b) and c) Qualitative analysis of neurological deficits by analyzing hindlimb 
stretching reflex and clasping identification. d) Beam walk crossing analysis between Shank3wt/wt (blue) and 
Shank3flx/flx (red). e) Rotarod performance and comparison between Shank3wt/wt (blue) and Shank3flx/flx (red) (n = 2 – 
3). All graphs, dot and error bars represent the group mean and SEM, respectively.
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Discussion and future perspectives 

 Physical activity has been identified as a crucial factor for reducing the risk for metabolic 

disorders, cardiovascular diseases, hypertension, and even mental disorders (Perez et al. 2019). 

However, since the industrial revolution, the tendency of modern western societies' lifestyle has 

been to promote sedentarism (Hallal et al. 2012). In 2012, it was estimated that over ~30% of 

the world adult population are physically inactive, and USA and Europe, the range is between 30 

– 45% (Hallal et al. 2012). It is forecast that in the future to be a major detrimental factor for 

people’s health. Because physical activity has a significant role in cognitive performance (Hillman, 

Erickson, and Kramer 2008), it is imperative to understand better its effects on the CNS.  

Nevertheless, we still have a narrow view of the physiological changes triggered by physical 

activity in the brain. Nowadays, research still has a predominant neuro-centric perspective, and 

the effect of physical activity on other cell populations, like the oligodendrocyte lineage, with 

some exception has been poorly described.  

With this work, I have increased our understanding of changes in the behavior of NG2-

glia and deepen into the role that they might play for circuitry remodeling after physical exercise, 

being the latter, to our knowledge, studied here for the first time. I have shown that VPA leads 

to increased proliferation and differentiation of NG2-glia. Interestingly, after increased physical 

activity, part of the population of NG2-glia less prone to differentiate takes over, in a process I 

denominated “the GPR17+ NG2-glia revolution,” reducing the global plasticity of the 

oligodendrocyte lineage (Fig. 26). GPR17+ NG2-glia responded differently to the rest of the NG2-

glia population, describing for the first time heterogeneity of NG2-glia in the response to VPA, 

which might reflect that not all of these cells are participating in experience-dependent circuit 

remodeling. I also found that the successfully differentiated progenitors were likely to become 

myelinating cells, which I believed integrated and remodeled the local circuitry. Finally, the 

increase in newly generated oligodendrocytes was followed up by improved performance in a 

memory-related task such as the novel object recognition (NOR), effect that was abolished by 

blocking differentiation of NG2-glia, without affecting the mouse baseline cognitive capability.  
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Figure 26. Summary of the effects of VPA in NG2-glia behavior. Here I illustrate that VPA induce the differentiation 
of NG2-glia by unknown mechanism (blue arrow) that could be axonal secretion or synaptic transmission (1), or a 
systemic signal (2). Newly generated oligodendrocytes start myelinating the naked segments of the axon, and 
simultaneously, neighboring GPR17+ NG2-glai start proliferating. The GPR17+ NG2-glia daughter cells migrate to the 
available space left by the NG2-glia that differentiated after VPA (red curved arrow). Finally, the maturation of 
oligodendrocytes is completed, forming a new myelin sheath that leads to changes in the axon property, modulating 
the circuit, and promoting cognitive improved. 
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In this final part of the thesis, I would like to comment on critical technical points that may 

have become part of this empirical work and to present arguments to explain our results in the 

light of the current literature. Furthermore, I include in the last section our vision of how exercise 

as a treatment could benefit the well-being of patients with various pathologies. 

Conceptual and technical dimension of our experimental paradigm for VPA 

In this section I would like to comment about the conceptual and experimental 

advantages and disadvantages of my model for studying the effects of physical activity on the 

oligodendrocyte lineage. First I will discuss about the VPA model itself and compare it to other 

models to study physical activity. Then, I will discuss about my approach to assess NG2-glia 

differentiation and provide reasons why is more accurate than strategies employed by other 

groups. Finally, I would like to comment on techniques that have been used to study NG2-glia 

heterogeneity. 

In this work, I used VPA as a paradigm for studying the effects of physical activity. The 

advantage of voluntary over forced physical activity is the reduction of animal manipulation and, 

accordingly, their stress. This point is fundamental because it has been reported that various 

stress paradigms induce aberrant NG2-glia behavior, such as decreased proliferation and 

differentiation, diminished morphological complexity and reduced myelination (Yang et al. 2016; 

Luo et al. 2019; Banasr et al. 2007). Therefore, stress represents a major confounding factor in 

exercise-related experiments. This element is important to take in consideration because stress 

phenotype can be reverse by exercise (Luo et al. 2019), making difficult to interpret the 

differences between active animals and the control ones under stress conditions. 

Another advantage mice running performance can be easily tracked and correlate the 

behavior of NG2-glia to the running performance due to animals being single-housed. 

Nonetheless, I must also consider that social isolation has been shown to affect myelination in 

the prefrontal cortex (Liu et al. 2012; Makinodan et al. 2012). Albeit it should also be pointed out 

that in my experiments, running and sedentary mice were housed individually. Therefore, social 

isolation should have affected both groups equally. Additionally, I used 8 – 12 weeks old mice, an 

age in which myelination is not affected by social isolation (Makinodan et al. 2012). This evidence 
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suggests the existence of critical time windows for different behaviors, and one may even 

speculate that also oligodendrocyte progenitors could be more susceptible to specific types of 

experience at a certain time period. Also, studies on stress differ from the social isolation 

protocols; therefore, the outcomes may be different. And finally, these results were similar to 

previous ones obtained by our group in a similar empirical setup but with animals caged in groups 

(Simon, Gotz, and Dimou 2011). Thus, I think that our experiments did not induce stress by social 

isolation as a confounding factor. 

Conceptually, models for increasing physical activity are two-sided. We are testing 

animals that have been maintained in captivity their whole life with little space and access for 

locomotor activity. Therefore, one could argue that I study the consequences of sedentarism 

rather than the repercussions of enhanced mobility. In my personal view, this conceptual 

ambiguity does not alter the interpretation or the importance of my results, and, in any case, can 

be applied and adjusted to the benefit of society. 

Additionally, it is important to address that the VPA model, as any in vivo model for 

physical activity, is simple to implement but difficult to fully interpret. Albeit, it is well 

documented that exercise increases neuronal activity in specific cortical regions; also, many other 

processes, including metabolic and homeostatic changes, take place simultaneously. For 

instance, increased physical activity decreases systemic pH by hypercapnia and the release of 

acidic metabolites from peripheral tissue. Although there is no evidence that NG2-glia express 

either pH- or CO2 receptors, it cannot be ruled out, given that other glial cells, like astrocytes, do 

(Beltran-Castillo et al. 2017; Gourine et al. 2010). 

Furthermore, water homeostasis and CBF changes happen after increase physical activity, 

as well as several molecular mediators, such as glucocorticoids, endorphins, lactate, BDNF, 

serotonin, etc. are synthesized in response to exercise. Therefore, there are local and systemic 

changes, and the participation of other cell populations should be also considered. However, at 

a first glance, that NG2-glia VPA-induced proliferation and differentiation were observed in the 

motor cortical GM but not in CC and piriform cortex suggests that a local rather than a systemic 

factor plays a critical role determining NG2-glia reactivity. A local factor may be understood as 
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the activation of specific neural pathways, the specific activity-dependent area release of active 

molecules or specific NG2-glia susceptibility in a brain region to a systemic factor. Nonetheless, 

for complex systems, it is essential to dissect their diverse sides. Exercise has relevant medical 

applications; hence, understanding its relationship with the oligodendrocyte lineage could be 

imperative. 

Regarding our method for assessing differentiation of NG2-glia, I observed that the use of 

reporter lines was more accurate in detecting newly generated oligodendrocytes than the most 

common strategy of analyzing the incorporation of thymine analogues, such as BrdU and EdU, 

together with typical oligodendrocyte markers, e.g., CC1, GSTπ, CNPase, etc. (Simon, Gotz, and 

Dimou 2011; Tomlinson, Huang, and Colognato 2018; Gibson et al. 2014; Steadman et al. 2020). 

As I reported in this thesis, there is a significant percentage of NG2-glia that directly differentiates 

without proliferating (Hughes et al. 2013; Hughes et al. 2018); therefore, previous methods have 

undermined the total number of newly generated oligodendrocytes. Because not every 

laboratory has access to transgenic mouse lines, a way to overcome this issue is to provide BrdU 

or EdU for weeks before inducing differentiation of NG2-glia. It has been shown that eventually 

80 – 100% of the cell population incorporates the thymine analogs (Simon, Gotz, and Dimou 

2011; Young et al. 2013), making it possible to label all NG2-glia and assess the proportion that 

differentiates after experience exposure. Nonetheless, this strategy unavoidably extends the 

duration of the experiments, and it could be critically detrimental to those studies that work with 

concise time windows or in aging and, additionally, NG2-glia keep differentiating while BrdU is 

provided, making more difficult to distinguish which oligodendrocytes were generated during the 

physiological conditions and during the experimental conditions.  

Another approach for evaluating experience-induced differentiation involve assessing the 

number of cells expressing novel early oligodendrocyte messenger RNA and proteins, such as 

Ectonucleotide Pyrophosphatase / Phosphodiesterase 6 (Enpp6) or Breast Carcinoma Amplified 

Sequence 1 (BCAS1) (Xiao et al. 2016; Fard et al. 2017). However, it is not completely clear 

whether these markers are also expressed in other stages of the oligodendrocyte lineage or even 

the time frame in which they are present in newly generated oligodendrocytes. For instance, at 

P10, BCAS1 seems to be detectable in NG2-glia and in myelinating oligodendrocytes at the 
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transcriptome level while it could not be found by immunostainings in adult animals (Zhang et al. 

2014; Fard et al. 2017). This discordance could reflect differences in the expression of early 

oligodendrocyte genes in adult and postnatal animals. On the other hand, Enpp6 is detectable at 

mRNA and protein level in immature and myelinating oligodendrocytes (Zhang et al. 2014; Xiao 

et al. 2016). It is also feasible that VPA and other conditions could accelerate the maturation of 

oligodendrocyte progenitors, complicating the design of precise time points for the experimental 

assessment, i.e., shortening the duration in which cells remain as an immature oligodendrocyte. 

Therefore, it seems reasonable to evaluate in more detail these markers before their widespread 

usage. 

A weakness of using inducible Cre-lox systems is its recombination rate. Even though it 

has been shown that a high proportion of NG2-glia expressed the GFP reporter in our mouse lines 

after recombination, I occasionally observed in our experiments oligodendrocytes that were 

BrdU+ and CC1+, but not GFP+ (Fig. 10d), reflecting a fraction of non-recombined progenitors. This 

problem can be partially overcome by providing BrdU and counting the number of iNGOLs, 

although the real absolute numbers of dNGOLs might still be undermined.  

The gene or protein expression profiling of NG2-glia is currently becoming a broad 

approach in an effort to understand the NG2-glia heterogeneity and function in the CNS under a 

broad variety of conditions (Zhang et al. 2014; Marques et al. 2016; Sharma et al. 2015). In this 

doctoral thesis, I combined two powerful techniques involving MACS and mass spectrometry to 

isolate and analyze the molecular signature of NG2-glia exposed and not exposed to VPA. 

Nonetheless, it is not devoid of restrictions. For instance, concerning our sorting method, I 

obtained around 5 x 104 – 10 x 104 cells per mouse cortical GM. These numbers are probably 

smaller than the total population in the cortex. This issue brings the follow questions: am I 

analyzing a representative sample of cortical NG2-glia? Or am I inadvertently selecting a 

subpopulation of cells?  

One way to overcome this issue might to increase the yield of cells retrieved by MACS or 

trying other sorting methodologies, e.g., flow cytometry fluorescence-activated cell sorter 

(FACS), which would be feasible due to our access to several reporter mouse lines. A second 
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possibility would be to extensively confirm the differential expression of proteins, found in the 

mass spectrometry, by histology, combining immunostainings and fluorescence in situ 

hybridization (FISH). Nevertheless, it is critical to point out that this approach would be 

immensely dependent on the quality of detection of antibodies and probes, and the former are 

not necessary always available. Moreover, it is also a strategy that demands a significant amount 

of work. 

I employed mass spectrometry to discover broad changes in the protein profile of NG2-

glia. Thereby, I was able to describe and identify changes in the cell population in a qualitative 

and in a quantitative manner due to the label-free quantification of the peptides contained in 

our probes. Although a very informative technique, it is limited in the detection of proteins 

according to their expression in relation to other proteins. Because of the detection system, 

abundant peptides mask the less abundant ones; therefore, they are overseen in our 

experiments. This issue could explain why synaptic proteins, like Shank3, were not detected in 

our proteome analysis.  

To improve protein detection in the future, I could process my samples by enriching 

different subcellular fractions of NG2-glia. In our set of experiments, I took the intact cells and 

isolated their peptides. On the one hand, this procedure has the advantage of having little 

variation among replicates, making protein evaluation more consistent. On the other hand, it 

generates probes with many different proteins, which, as mentioned above, can contribute to 

highly concentrated peptides, masking the lower abundant ones. By fractioning the cells in the 

subcellular compartments, e.g., plasmatic membranes, nucleus, and cytoplasm, I would reduce 

the amount of protein per probe, reducing the risk of masking. Nonetheless, adding extra steps 

of subcellular fractionation can also affect the replicability of our sampling, by increasing the 

variability among them.  

Another strategy that can be considered is changing the discovery-based approach to a 

targeted one (Doerr 2013). Typically, mass spectrometer measures and reports the mass-to-

charge ratio of the peptide ions. Therefore, in a targeted workflow, it can be programmed to 

detect specific proteins. Nonetheless, this requires more up-front investment than the discovery-
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based strategy because the characteristics of the peptides of interest must be determined 

beforehand. 

Another technique that has a broader output and is being recently implemented in the 

oligodendrocyte field is single-cell RNA sequencing (sc-RNAseq). It has allowed the 

characterization of different populations of NG2-glia and oligodendrocytes under various 

conditions like complex wheel running, demyelination by EAE, and WM lesions of MS patients 

(Marques et al. 2016; Falcao et al. 2018; Jakel et al. 2019). Such a technique could provide critical 

insights regarding the behavior of NG2-glia towards neuronal activity and experience. 

Nonetheless, it contains similar interpretative issues as other techniques. First, it has been a 

rather general assumption in the field of transcriptomics that increase in messenger RNA 

necessarily leads to increased protein level. There is a long pathway of regulatory mechanisms in 

the translation from mRNA to protein, which we generally attribute a biological function 

regarding signal detection and processing as well as catalytic capacity. Furthermore, only a 

modest correlation has been reported between transcriptome and proteome analysis in rodents 

(Ghazalpour et al. 2011). That brings us to the same point, which is the need to corroborate 

results obtained by sc-RNAseq by other techniques, like immunostainings, FISH, western blot, 

and even mass spectrometry.  

RNAseq has been done by analyzing single time points in the population. Regarding 

changes in NG2-glia due to experience and neuronal activity, it is relevant to establish critical 

time windows to define the pathways that are involved in proliferation and differentiation of 

progenitors. Otherwise, we would detect changes in the population rather than the molecular 

mechanisms that trigger those responses. This challenge can be addressed with approaches like 

optogenetics and pharmacogenetics, in which the stimulus can be exquisitely controlled in 

contrast to indirect stimulation by VPA, or sensorial deprivation, among others. This point also 

applies to mass spectrometry-based strategies. 

A general problem that have most molecular high throughput screening strategies 

concern the amount of data obtained, and even more important, their processing and 



Discussion and future perspectives 
 

119 
 

interpretation. Therefore, it is crucial to heavily invest in the development of bioinformatical 

approaches for the evaluation of the results. 

 

NG2-glia behavior dynamics after VPA 

Initially, our results showed that VPA led to increase of proliferation and differentiation 

of motor cortex NG2-glia (Fig. 7c – 7h). This phenomenon had been previously described by other 

and our groups (Simon, Gotz, and Dimou 2011; Ehninger et al. 2011; Mandyam et al. 2007; 

Tomlinson, Huang, and Colognato 2018). However, those investigations had conceptual and 

methodological assumptions, as well as constraints and a different approach to the dynamics of 

oligodendrocyte progenitors than those used in this work.  

First, I mainly focused in the motor cortex (Fig. 7b) and not in the prefrontal cortex 

(Tomlinson, Huang, and Colognato 2018; Mandyam et al. 2007) or the somatosensory cortex 

(Simon, Gotz, and Dimou 2011). This brain region was selected because the increment of the 

metabolic demand and the CBF of the motor cortex, as well in other areas, that have been 

reported after exercise (Vissing, Andersen, and Diemer 1996; Hiura et al. 2018), both affected by 

local changes in neuronal activity. Additionally, axons in the cortex are not entirely myelinated, 

having a myelin distribution rather discontinuous (Tomassy et al. 2014). This feature endows 

cortical axons for possible new myelin incorporation. Because of its paramount importance, I will 

revisit this topic later in this discussion.  

Secondly, this work described the dynamics of the oligodendrocyte progenitors' response 

to VPA at multiple time points. For instance, I observed increased numbers of proliferating NG2-

glia and newly generated oligodendrocytes already after two weeks of VPA, which increased 

further after four weeks of VPA (Fig. 7e – 7h). Therefore, I concluded that the longer of the 

experience is provided, the more robust is the increase in proliferation and differentiation of 

NG2-glia. Conversely, the removal of running wheels after two weeks of VPA abolished the effect 

in cell proliferation and arrested further addition of newly generated oligodendrocytes (Fig. 7f – 

7h). This initial data set suggests that continuous VPA is necessary to maintain NG2-glia division 

and differentiation. As soon as the stimuli is removed, the proliferation of NG2-glia dropped, 
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while the number of oligodendrocytes that have been generated during VPA are the same as in 

the animals that were directly sacrificed after two weeks of VPA. 

Interestingly, the dynamics of the NG2-glia behavior appear to be very similar to neural 

stem cells (NSC) in the hippocampal DG. It has been shown that increased physical activity 

increases neurogenesis and it keeps growing as long as the running wheels are available (van 

Praag et al. 1999; Olson et al. 2006; Diederich et al. 2017; Voss et al. 2019; Wu et al. 2008; 

Nishijima et al. 2017). As it happened in the oligodendrocyte lineage, NSCs show a negative 

rebound effect after cessation of physical activity, which leads to a decrease in the number of 

proliferating NSCs (Nishijima et al. 2017). Therefore, once more, I have provided new evidence 

that NG2-glia and NSCs shared characteristics in their behavior in response to VPA. Thus, it is 

possible that exercise-induced oligodendrogenesis and neurogenesis in the adult brain may be 

ruled by common mechanisms.  

In the same line, it has been shown that new neurons are also massively generated 

without VPA, but most of them do not survive to become mature cells (Kempermann et al. 2003; 

Biebl et al. 2000). Notably, this fate is overturned by physiological experience, e.g., enriched 

environment and voluntary physical activity, reducing spontaneous apoptosis of NSCs and 

providing neuroprotective factors to immature cells (Young et al. 1999; Bouchard-Cannon et al. 

2018). Under the light of this evidence, similar situation could be true for the oligodendrocyte 

lineage. Experiments involving in vivo time-lapse 2-photon imaging in adult mice, reports that the 

number of newly generated oligodendrocytes is higher than expected, albeit, only ~20% of 

differentiated NG2-glia survive and integrate, which increases with sensorial stimulation of 

whiskers (Hughes et al. 2018). This phenomenon perhaps explains why I did not observe a strong 

increase in the number of newly generated oligodendrocytes between the two- and four-weeks 

control groups (Fig. 7h). Therefore, VPA may result in the release of molecules that promote the 

survival of differentiated NG2-glia and not necessarily lead to increase in differentiation. 

Regarding the dynamics of NG2-glia behavior during VPA, it is worth noting that the 

population of progenitors remains constant despite the increase in their proliferation (Fig. 7i). 

There may be two possible explanations for this observation. First, NG2.glia are regulated by their 
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physiological homeostatic population control. It could be thinkable that VPA modulates the 

differentiation of NG2-glia but not their proliferation. Cell division then comes as a byproduct of 

the increased generation of new oligodendrocytes. It has been shown that NG2-glia regulate their 

population size by mechanisms of self-repulsion governed by their small projections (Hughes et 

al. 2013). The differentiation of oligodendrocyte progenitors might leave NG2-glia “free-gap”, 

thereby promoting the proliferation and later the migration of neighboring cells (Hughes et al. 

2013). Hence, proliferation could be subjugated to NG2-glia VPA-induced differentiation and that 

VPA has not a direct effect on their cell division. 

A second possibility is that VPA promotes NG2-glia asymmetric proliferation, a feature 

that has been widely observed in radial glia cells during development and in the adult, and also 

in NG2-glia in slices after lysophosphatidylcholine (LPC) damage of the WM (Kriegstein and 

Alvarez-Buylla 2009; Hill et al. 2014). With this mechanism, NG2-glia can self-renew their 

population and simultaneously generate new oligodendrocytes. As a result, there is 

differentiation without affecting the total population of NG2-glia. Although I am reluctant to 

endorse this alternative, because if asymmetric proliferation was the principal mechanism, the 

number of BrdU+NG2+ and BrdU+CC1+ should be similar. On the contrary, our results show that 

the proportion of cells that directly differentiate is higher than the one that proliferated before 

becoming oligodendrocytes (Fig. 10e). Therefore, it is more likely that proliferation is driven by 

homeostatic self-renewal than by asymmetric differentiation, although both phenomena are not 

mutually exclusive. 

Additionally, I showed that NG2-glia can form oligodendrocytes by two modalities. I 

named them as direct and indirect differentiation, whose distinction is based on the absence or 

presence of proliferation before the generation of oligodendrocytes, respectively. It is necessary 

to consider that this concept is framed by the time points when experiments were performed, 

specifically by the moment I induced the animals and provided BrdU until the time of sacrifice. 

Most studies do not make this distinction because they tend to choose between two standard 

methodologies. Either to provide BrdU and observe how many of these labeled progenitors 

differentiate (Simon, Gotz, and Dimou 2011; Tomlinson, Huang, and Colognato 2018; Gibson et 

al. 2014; Steadman et al. 2020; Xiao et al. 2016) or to express by transgenic mouse lines a protein 
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reporter on NG2-glia and check their overlap with oligodendrocyte markers (McKenzie et al. 

2014; Young et al. 2013; Huang et al. 2014). Although it has been shown by previous studies done 

by two photon in vivo imaging that these two different modalities exist (Hughes et al. 2013), this 

doctoral thesis has been the first attempt, in my knowledge, to characterize and quantify them 

in depth (Fig. 10e). 

I observed that in animals housed in standard cages, direct and indirect differentiation 

happened in almost equal proportions. These results can reflect that, under naive physiological 

conditions, both processes are likely to happen. Nonetheless, VPA increases the likelihood of 

progenitors to undergo direct differentiation. Those progenitors using the indirect pathway 

might be cells that proliferated and lately differentiated driven by VPA or by the regular 

reposition of oligodendrocytes in the system, independent of VPA (Young et al. 2013; Dimou et 

al. 2008; Hughes et al. 2013; Yeung et al. 2014).  

Finally, I found that animals respond differently to VPA depending on their running 

performance (Fig. 10). In mice that run under ~1km per day, NG2-glia differentiation was similar 

to the controls. Unexpectedly, the maximum increase of newly generated oligodendrocytes was 

reached immediately after this distance threshold (Fig. 10). The explanation for this remains 

elusive. It could be that optimal effective signaling from neuronal activity was reached 

immediately after this threshold. Other possibilities could be related to the heterogeneous 

response of NG2-glia to VPA. 

 

Heterogeneous effect of VPA on NG2-glia  

In this doctoral thesis, I have also provided robust evidence that VPA has a differential 

effect on distinctive populations of NG2-glia in different regions but also within a single one, the 

latter being the first time that it has been shown that NG2-glia populations have differential 

responses to VPA or experience. 

Notably, the effects of VPA seems to be specific to the GM of the motor cortex, and 

neither the white matter nor other grey matter areas, like the piriform cortex, show an effect 
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(Fig. 8c – 8h). This apparent unresponsiveness of the piriform cortex could be due to the lack of 

changed neuronal activity in that region , given that this area is fundamental in the processing of 

odorant information, which I assumed remains relatively constant and does not activate after 

exercise (Hiura et al. 2018). It is worth noting that previous reports have shown that in the 

prefrontal cortex, NG2-glia presented a similar increase in differentiation, but not the 

proliferation, after four weeks of increased physical activity (Tomlinson, Huang, and Colognato 

2018). These disparities in results could also reflect regional differences in the dynamics of NG2-

glia behavior, and particular to this discussion, between the prefrontal and the motor cortex.  

The absence of changes in the WM cannot be explained by the lack of neuronal activity 

given that many neurons of the motor cortex have projections that cross the WM beneath that 

cortical region. In contrast to our results, it has been described that NG2-glia in the CC increased 

their differentiation four weeks after a seven-day optogenetic stimulation of pyramidal neurons 

in layer V of the motor cortex (Gibson et al. 2014). Nevertheless, in these experiments is 

important to consider differences in the time course of stimulation and that these alterations 

could be due to the artificial stimulation of these neurons, which would not occur in a 

physiological context. Our data are reinforced by observations of other groups. It has been 

reported that physical activity induces WM NG2-glia proliferation after four days of running. 

However, after ten days of constitutive running, no differences could be observed compared with 

the control (McKenzie et al. 2014). Also, in juvenile mice, it has been reported that four weeks of 

running increases the generation of oligodendrocytes in the CC associated with the prefrontal 

cortex (Tomlinson, Huang, and Colognato 2018), revealing that there may be not only CC regional 

but also age-dependent differences. 

It could be also possible, in regard to our results, that differences in the NG2-glia behavior 

between the GM and the WM can be due to either intrinsic variation within their populations, 

making them to react differently to VPA, or environmental disparities, with the WM to be more 

oligodendrocyte/myelin saturated and, thus, a restrictive environment for NG2-glia 

differentiation. Furthermore, it has been previously shown by our group and others that 

oligodendrocyte progenitors in the WM have a distinctive morphology, as well as faster 
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differentiation and proliferation rates than their counterparts in the GM (Vigano et al. 2013; 

Young et al. 2013; Dimou et al. 2008). 

Interestingly, as discussed above, NG2-glia would take two modalities to differentiate by 

generating directly or indirectly newly generated oligodendrocytes (Fig. 10). I observed that VPA 

shifted the preference towards the generation of direct over indirect newly generated 

oligodendrocytes. This preference probably reflects differences within the NG2-glia and their 

response to VPA, which promotes a part of the population to differentiate rapidly, an event 

described in other experience-dependent processes (Xiao et al. 2016; McKenzie et al. 2014; 

Steadman et al. 2020; Pan et al. 2020). In contrast, another fraction remained more resistant to 

the transition. The idea of two populations differentially responding to VPA gains strength in my 

study because of five additional pieces of evidence:  

First, the differentiation of progenitors by VPA required a low threshold of physical 

intensity to initiate. After reaching it, the generation of oligodendrocytes lacks a linear 

correlation, reaching very fast a “saturation plateau”. This differs significantly from the 

neurogenesis in the hippocampal DG, which shows a positive linear relationship between running 

performance and the number of newly generated neurons (Diederich et al. 2017). Our 

interpretation is that the number of NG2-glia that can directly differentiate is limited and thereby 

restricts the generation of new oligodendrocytes by VPA.  

Second, I have shown by NG2-glia protein profiling after VPA that the population shift 

from a “prompter” to form new oligodendrocytes to a more resistant one (Fig. 13). This 

interpretation raised because initially, after VPA, a part of the NG2-glia population differentiated 

while another part remains as progenitors. Notably, the total number of NG2-glia in the cortex 

did not change, regardless of the stimulation by VPA. Therefore, the explanation cannot reside 

in the fact that fewer cells are recruited after VPA, but, on the contrary, it appears that this 

population did not manage to differentiate and repopulated the cortex (Fig. 7i and 14c). 

Henceforth, the changes of the protein profile mirror the identity of the “new remained” NG2-

glia population after VPA. Finally, I observed by functional enrichment of the remaining 

population that after VPA there were several downregulated proteins that are involved in the 
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differentiation of NG2-glia (Fig. 13). This data may show the limitations of global NG2-glia 

plasticity, which will be revised later in this discussion.  

Third, I observed that the population GPR17+ NG2-glia surpassed the population of 

progenitors as a higher fraction of NG2-glia expressed GPR17 after VPA (Fig. 14c). This shift in the 

global phenotype was coherent with our findings in the proteome analysis because these cells 

are known to have a slower differentiation rate than the rest of the NG2-glia (Vigano et al. 2016). 

Worth noting that I did not observe differences in the total number of NG2-glia after VPA (Fig. 

7i); thereby, it is reasonable to think that the GPR17+ NG2-glia did not increase on top of the pre-

existing population but instead replaced it. 

Fourth, the behavior of GPR17+ NG2-glia after VPA showed significant differences in 

comparison to the total population of NG2-glia. Moreover, when I compared their differentiation 

rate with the one of the total population (compare Fig. 10e with 15g), I concluded that the 

magnitude is lower and it is even delayed; thus, despite GPR17+ NG2-glia can turn into 

oligodendrocytes, they do it in a lower rate and scale than other progenitors. Therefore, I suggest 

that GPR17+ cells overtake the NG2-glia population, a fact that might represent a physiological 

mechanism to break the continuous generation of new oligodendrocytes. 

Fifth, extensive VPA failed to generate more oligodendrocytes than those observed in 

controls (Fig. 16b), suggesting that there was a depletion of NG2-glia responsiveness to VPA; 

thereby, reducing the plasticity capacity of the total population. 

From this body of evidence, I concluded that there were at least two populations of NG2-

glia that possess a differential reactiveness towards VPA, being identified GPR17+ NG2-glia as less 

sensitive to VPA. Recent evidence in zebrafish larvae has shown that only a defined group of NG2-

glia was capable of integrating neuronal activity, and that increased activity led to enhanced 

proliferation and differentiation of oligodendrocyte progenitors (Marisca et al. 2020). These 

results corroborate that a certain population of oligodendrocyte progenitors might be reactive 

to VPA and possibly an evolutionary trait shared among vertebrates. Interestingly, in contrast to 

our data, the same group reported that the NG2-glia population responsive to neuronal activity 

population in the zebrafish had higher levels the GPR17 mRNA (Marisca et al. 2020). I could 
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speculate that the role of GPR17+ NG2-glia could depend on the animal species and their 

developmental stage. 

These observations corroborate once again the heterogeneous nature of the NG2-glia 

(Vigano and Dimou 2016). New populations may be discovered in the future at the hand of new 

methods of mass sequencing at the individual cell level (Falcao et al. 2018; Marques et al. 2016; 

Vigano and Dimou 2016). Nonetheless, this diversity of NG2-glia is still missing a functional role 

with the notable exception of the GPR17+ NG2-glia, which are differentiating after injury. 

However, which would be their role in VPA? In the next section, I will attempt to answer this 

question. 

 

A possible role of GPR17+ NG2-glia in plasticity and adaptive myelination 

 To answer, perhaps it is vital to revise the behavior of this population during 

development. GPR17+ NG2-glia increase shortly after birth of mice and progressively increase 

with time, reaching a peak in their production at P14, and later decreasing to a baseline level at 

P24, which is maintained through adulthood (Chen et al. 2009; Boda et al. 2011). Notably, during 

the same timeline, myelin also reaches a peak of production at P14 as well, and interestingly, 

deletion of GPR17 protein leads to premature myelination (Chen et al. 2009; Wright et al. 2010). 

Therefore, it is proposed that the GPR17+ NG2-glia function as a physiological brake pedal to 

restrict the global plasticity of NG2-glia. 

I propose that this population share similar functions after VPA. First, I observed that the 

running mice with the highest number of GPR17+ NG2-glia showed the lowest number of 

indirectly newly generated oligodendrocytes (Fig. 14d), suggesting that the promotion of this 

population possibly limits further oligodendrocyte production. Second, as aforementioned, 

GPR17+ NG2-glia reaction to VPA differs from the rest of the population, and although they 

differentiate, the magnitude is decreased and delayed compared with the total population, 

occurring only after six weeks of VPA (compare Fig. 10e with 15g). Third, I demonstrated that 

extensive VPA did not induce the further formation of new oligodendrocytes, suggesting that the 

system was depleted of VPA sensitive NG2-glia (Fig. 16b).  
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An argument against my third point interpretation may be that NG2-glia from aged 

animals, appears to have a less plastic phenotype. It has been widely reported that 

oligodendrocyte progenitors proliferation and differentiation diminishes with aging, as I have 

also observed in our experiments (Fig. 16e) (Dawson et al. 2003; Dimou et al. 2008; Young et al. 

2013; Kang et al. 2010). Nonetheless, I demonstrated that aged animals were capable to respond 

with differentiation after VPA (Fig. 16b). Notably, even though NG2-glia in aged animals retain 

their capacity to respond to VPA, this capacity diminished in older mice compared with the 

younger ones. Interestingly, differentiation induction by VPA in younger and older animals, 

approximately double their respective control counterparts (Fig. 16e).  

To my knowledge, this is the first time shown that changes in NG2-glia plasticity after 

persistent stimulus have been addressed. These findings bring new questions to the discussion: 

why are there mechanisms limiting the differentiation of NG2-glia? If newly generated 

oligodendrocytes are vital for improving the cognition baseline, as aforementioned, why not 

continue their generation? The answer may be one of the few processes in neurobiology that 

follows the Occam’s razor principle.  

First, it is about the finite space that the brain provides. Because NG2-glia guard their own 

population throughout life by self-regulatory mechanisms (Dawson et al. 2003; Simon, Gotz, and 

Dimou 2011; Hughes et al. 2013); the pool for oligodendrocytes has a continuum and, in theory, 

is unlimited. 

Second, the substratum available to be myelinated is limited. Axons have a restricted 

number of segments that allows the integration of new internodes (Tomassy et al. 2014). 

Moreover,  even if there are many naked axonal regions or there are many unmyelinated axons 

(Sturrock 1976), it is questionable the benefice of additional myelination to information 

processing. Adaptive myelination is an instrument that has been theorized around the fine-tuning 

of circuits (Pajevic, Basser, and Fields 2014). Thereby, over-myelination could bring problems of 

asynchronicity in spike-time arrivals, making some conduction way faster than necessary. 

Third, generating new oligodendrocytes that would be unable to myelinate seems like a 

waste in energetic currency. Although oligodendrogenesis and myelination indeed take place 
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during the whole lifespan of rodents and humans (Dawson et al. 2003; Dimou et al. 2008; Young 

et al. 2013; Kang et al. 2010; Yeung et al. 2014), with the human cortex exhibiting an impressive 

2.5% turnover per year in adulthood, only a small fraction of them survive to mature and 

integrate into the cortex (Hughes et al. 2018; Young et al. 2013). Therefore, producing more 

oligodendrocytes than needed seems to be unfavorable for the organism.  

Regarding this last point, VPA could be detrimental for the physiological turnover of 

oligodendrocytes? It is unlikely to be the case. It has been determined that all NG2-glia can 

proliferate and differentiate (Simon, Gotz, and Dimou 2011; Vigano et al. 2016). It is possible that 

other factions of the population, e.g., progenitors expressing GPR17, assume the role of 

maintaining the production of oligodendrocytes as needed. Furthermore, those myelinating cells 

that have been integrated during VPA would also be affected by factors such as aging (Lasiene et 

al. 2009). 

 

Oligodendrogenesis promoted by VPA plays a role in exercise-induced cognitive 

enhancement 

Other studies have reported that increased physical activity induces the differentiation of 

NG2-glia; however, the question regarding their function after VPA has not been tackled. Hence, 

to answer this, I asked whether newly generated oligodendrocytes matured into myelinating 

cells, which could provide insights regarding their incorporation into the cortical circuit. I 

observed that after six weeks of VPA, the number of MAG+GFP+ cells increased 3-fold in the motor 

cortex, and this effect was observed in all cortical layers. This evidence suggests that VPA 

remodels the cortical circuitry by enhancing myelin availability through newly generated 

oligodendrocytes. 

Do the numbers of newly generated myelinating oligodendrocytes matter? I observed 

that the number of GFP+MAG+ cells increased from 10.15 ± 1.30 to 29.78 ± 5.27 per 1mm2. 

Therefore, the question could represent a probable criticism of whether the number of 

oligodendrocytes that reach full maturity is enough to lead to significant remodeling changes in 
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the motor cortex, triggering alterations in the cognitive processing of these mice. In principle, it 

appears to be a legitimate concern. Nonetheless, I believe that it might be unfunded.  

First, it has been hypothesized that myelination has a profound effect on the propagation 

of the action potential, reducing the time delay between the generation of the signal and its 

arrival. Furthermore, it has been argued that subtle changes in the order of 10% in the 

distribution and other properties of myelin could lead to substantial changes in the temporal 

synchrony and oscillations in neuronal firing (Pajevic, Basser, and Fields 2014). Recent 

experimental evidence supports the theoretical framework that slight enhancement of 

oligodendrogenesis is sufficient for learning and memory improvement, having tremendous 

repercussions in hippocampal and prefrontal cortex oscillators synchronicity, which is severely 

affected by blocking NG2-glia differentiation (Steadman et al. 2020; Pan et al. 2020). 

Second, to analyze the contribution of oligodendrocytes to information processing by 

simply counting cells is misleading. The regulatory power of myelinating cells over circuits 

depends on the internode associated to the axon and not on their soma. Furthermore, one single 

oligodendrocyte can form up to 60 internodes (Nave and Werner 2014). Thus, I could estimate 

from our results that the increase of ~30 newly formed oligodendrocytes after VPA could 

generate up to a remarkable 1800 new myelin sheaths available to modify propagation speed. 

Third, another common misconception is to assume that oligodendrocytes lack 

selectiveness when choosing the targets to be myelinated. A concept that probably came from 

in vitro experiments. In culture, oligodendrocytes do not require specific signals to initiate 

myelination. This phenomenon is not only real for mixed cocultures, but also with inert PFA-fixed 

axons and nanofibers (Rosenberg, Powell, and Chan 2007; Lee, Leach, et al. 2012). Nonetheless, 

it has been shown in vivo that activity-dependent myelination creates a bias on oligodendrocytes 

to wrap around those neurons that are electrically active (Hines et al. 2015; Mitew et al. 2018). 

Therefore, those 1800 new internodes might be associated with axons that respond to VPA with 

increased electrical activity or secreted growth factors (Lundgaard et al. 2013). 

Fourth, the amount of newly generated oligodendrocytes may be underestimated due to 

some limitation that would be worth to consider. In this set of experiments, I used the inducible 
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Cre-lox system mouse model NG2-CreERT2 x CAG-GFP, which, as I mentioned, presents 

incomplete NG2-glia recombination (Huang et al. 2014; Schneider et al. 2016).  Therefore, I could 

oversee part of the population of progenitors that might also be directly differentiating. 

The functionality of these new oligodendrocytes is a difficult problem to tackle because 

of the alleged lack of a measurable behavioral outcome provided by VPA. Nevertheless, we know 

that increased physical activity leads to cognitive enhancement in tasks related to learning and 

memory (Hillman, Erickson, and Kramer 2008), a phenomenon, so far, monopolized by neurons 

and neurogenesis (van Praag et al. 1999; Olson et al. 2006; Diederich et al. 2017; Voss et al. 2019; 

Wu et al. 2008). The importance of oligodendrocytes has not been approached until now. 

Previous evidence showed that preventing NG2-glia differentiation impairs motor learning, 

spatial localization, fear-conditioning, and working memory  (McKenzie et al. 2014; Steadman et 

al. 2020; Pan et al. 2020; Xiao et al. 2016; Geraghty et al. 2019). Hence, following a similar 

approach like in these studies, I took advantage of our model Sox10iCreERT2 x Esco2fl x CAG-GFP, 

which block the formation of newly generated oligodendrocytes (Fard et al. 2017; Schneider et 

al. 2016). Hence, I induced animals before starting our VPA protocol, to prevent the 

differentiation of NG2-glia in response to exercise, and later I measured their learning and 

memory capacity through the novel object recognition task (Fig. 18).  

I observed that all groups had normal locomotion, and additionally, the baseline ability to 

recognize the novel object was not impaired (Fig. 18 and 19). This last point was fantastic news 

because I wanted to analyze only the enhancement of cognition due to increased physical 

activity. Otherwise, if the deletion of Esco2 from our mutant mouse line had affected the 

performance in our task, our results would have had a more complicated interpretation. It could 

be argued that NG2-glia ablation impairs learning and memory and does not relate to cognition 

enhancement. Interestingly, when I assessed the NOR performance, by retrieving the recognition 

index, I observed that the improved performance induced by VPA was abolished in the Sox10-

Esco2flx/flx mice compared with the Sox10-Esco2wt/wt. In the same line, Sox10-Esco2flx/flx runners 

showed a performance similar to the Sox10-Esco2wt/wt and Sox10-Esco2flx/flx housed in standard 

cages (Fig. 21). These results suggest that the formation of new oligodendrocytes is essential for 

the cognition enhancement induced by VPA. 
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A question raised along these experiments was whether the ablation of Esco2 in NG2-glia 

and the changes in NG2-glia led to impairment of adult neurogenesis and indirectly affect the 

enhanced generation of neurons also induced by increased locomotion. Therefore, it was 

imperative for us to show that neurogenesis was not affected by the ablation of NG2-glia. 

Additionally, the role of newly generated oligodendrocytes could be to metabolically support 

NSCs that are differentiating into neurons (Funfschilling et al. 2012; Klugmann et al. 1997; Lappe-

Siefke et al. 2003; Lee, Morrison, et al. 2012; Biebl et al. 2000; Kempermann et al. 2003). 

To tackle this enigma, I analyzed the proliferation of NSCs in the hippocampal DG of 

Sox10-Esco2wt/wt and Sox10-Esco2flx/flx with and without VPA. I observed that Sox10-Esco2wt/wt 

and Sox10-Esco2flx/flx, showed an increased proliferation of neuroblasts in comparison to their 

respective sedentary control (Fig. 21). Additionally, I failed to find differences between the 

control groups or the VPA groups. Thus, this data suggests that NG2-glia differentiation is 

necessary for task performance enhancement but does affect neither baseline memory 

formation or consolidation, nor hippocampal neurogenesis. 

Our work does not pretend to undermine or imply that enhanced neurogenesis by 

increased physical activity plays no role in cognitive improvement. Conditional depletion or X-ray 

irradiation of newly born neurons in the DG leads to impairment in spatial memory, novel object 

recognition, and fear-conditioned memory (Jessberger et al. 2009; Saxe et al. 2006). Moreover, 

spatial memory deteriorated by X-ray irradiation depletion of DG NSCs can be reversed by forced 

running exercise, which also increases neurogenesis by brain-derived neurotrophic factor 

(BDNF)-dependent mechanism (Ji et al. 2014). Thus, I believe that both oligodendrogenesis and 

neurogenesis are necessary for enhanced cognitive performance induced by exercise, and I 

forecast that the inhibition of one or the other would lead to the abolishment of augmented 

cognition. 

More and more evidence is gathered supporting the role of oligodendrogenesis in the 

modulation of cognition. Previous research established that the generation of new 

oligodendrocytes was a consequence of learning and memory (Steadman et al. 2020; Pan et al. 

2020); hence, the experience itself leads to the differentiation of NG2-glia. In this doctoral thesis, 
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I found that oligodendrogenesis is vital for the integration of increased physical activity and the 

modulation of cognitive processes. This concept by itself is already a fascinating novelty within 

the field of NG2-glia, the oligodendrocyte lineage, and adaptive myelination. 

 There are still questions regarding the participation of adaptive myelination in cognition. 

Although we know that oligodendrogenesis is necessary for learning and the consolidation of 

memory, open questions are still unanswered regarding their role in other related processes. For 

instance, extinction or “forgetting” happens in most forms of memory. In the case of neurons, 

some mechanisms have been widely described such as reduction of synaptic strength, changes 

in dendritic spines turnover or their removal, and so on (Luchkina and Bolshakov 2019; Wang, 

Yue, et al. 2020). 

On the other hand, current vision of myelinating oligodendrocytes is that they are 

persistent in time. Myelinating cells may undergo apoptosis and remove the wrapping around 

the axon. A second alternative is that the internodes change their properties, such as their length 

and compaction, or that myelin processes retract undressing their previous targeted axonal 

segment. However, it could be that myelin does not play a role at all in this process, and only 

changes at the neuronal level occur. 

 

Possible circuits remodeled by adaptive myelination promoted by VPA 

It is known that the distribution of myelin segments along axons of the cortex is 

heterogenous and discontinuous (Tomassy et al. 2014), providing a suitable substratum for 

adaptive myelination to occur. It has been shown that myelin impairment of thalamocortical 

axons, projecting to the motor cortex, has a detrimental effect on motor learning related-tasks 

(Kato et al. 2020), which has been attributed to asynchronicity of signals arriving at this area.  

An important point for these results interpretation is that the motor cortex projects to 

the retrosplenial cortex (RSC) (Yamawaki, Radulovic, and Shepherd 2016; Jeong et al. 2016), 

which is an associative cortical area that has been fundamentally related to spatial learning and 

memory (Vann, Aggleton, and Maguire 2009). It has been reported that object recognition task 
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adapted for measuring long-term memory is impaired after a lesion in RSC (Haijima and Ichitani 

2012). Additionally, by searching in the literature and the Allen Brain Atlas: Mouse Connectivity 

open-sourced database, I found a possible circuit loop between cortical areas. It has been 

anatomically described that RSC receives diverse input from the dorsal hippocampus and 

parahippocampal regions (Sugar et al. 2011) and has monosynaptic projections to the 

hippocampal DG (Allen Institute, Allen Brain Atlas: Mouse Connectivity). Furthermore, RSC has a 

feedback loop to the motor cortex (Yamawaki, Radulovic, and Shepherd 2016), emphasizing the 

reciprocity and codependent function between the RSC and the motor cortex. To advance in the 

description of the role of adaptive myelination induced by physical activity might have on this 

circuit, it is important to define whether the motor cortex projections to the RSC are the ones 

being myelinated. To answer this, it could be informative to inject a retrograde tracer into the 

RSC of our Cre-lox reporter mouse (e.g., NG2-CreERT2 x CAG-GFP) and, by histological analysis, 

evaluate whether these axons have internodes of newly generated oligodendrocytes induced by 

VPA. 

What role is played by newly generate oligodendrocytes in this circuit? With the current 

evidence, it is difficult to specify the role of NG2-glia and adaptive myelin in the regulation of this 

circuit. It has been proposed that the purpose of adaptive myelination is to synchronize spike-

time arrival and to promote synchronization of signals, circuits, or oscillators (Kato et al. 2020; 

Steadman et al. 2020). It is tempting to suggest that myelin remodeling might be required to 

strengthen or synchronize the local corticocortical circuitry between the motor cortex and the 

RSC. In turn, this could lead to improvement of the strength of the signals from the RSC to the 

hippocampus or even promote synchronicity among different parts of the circuit. It would be 

interesting to explore how behaves neuronal activity in these areas and whether they are 

synchronized before and after increased physical activity. Later, it would be essential to analyze 

by blocking NG2-glia differentiation during exercise, possibly with Cre-lox systems like our Esco2-

fl or Myrf-fl (key transcription factor in oligodendrogenesis, which deletion impairs the 

generation of new oligodendrocytes) mice, to assess whether the activity of these areas and their 

synchronicity changes depending on physical activity. 
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 Interestingly, it has been recently shown that not only long-range excitatory neurons are 

myelinated but also a large proportion of local inhibitory neurons, mainly the fraction of fast-

spiking parvalbumin interneurons (Micheva et al. 2016; Stedehouder et al. 2017; Stedehouder et 

al. 2019). In addition, myelination of other inhibitory neurons like the somatostatin positve ones 

has been described, presenting a lower number of internodes than the parvalbumin counterparts 

(Zonouzi et al. 2019). What seems fascinating is that the degree of myelination in parvalbumin 

neurons is activity-dependent. It has been shown that by the expression of DREADDs in 

parvalbumin interneurons, and their subsequent stimulation, the number of internodes 

associated to them increases together with their arborization complexity (Stedehouder et al. 

2018). To understand how new myelin affects these neurons might be of crucial relevance 

because it is accepted that inhibitory interneurons constitute a significant component in the 

regulation of behavior (Swanson and Maffei 2019). 

 Adaptive myelination may regulate local circuits excitation by modifying the spike-time 

arrival of the cortical interneurons input. For example, new myelination of interneurons allows 

synchronizing spike-time arrival coming from the inhibitory neuron with the excitatory signal 

from a pyramidal neuron, resulting in the overall inhibition of the circuit. Nonetheless, it is 

difficult to imagine how promoting local inhibition could lead to cognitive enhancement. A 

second possibility is that new myelin “de-synchronizes” the simultaneous spike-time arrival of 

excitatory and inhibitory neurons inputs, disinhibiting the circuit and promoting overall 

excitation. Because interneurons can inhibit each other (Pfeffer et al. 2013), interneurons 

projecting towards other interneurons synchronize their time-spike arrival to inhibit the targeted 

interneurons and release excitatory neurons from their inhibition. 

 A simple approach to solve this problem would be to express reporter proteins in different 

GABAergic neurons (e.g., parvalbumin, somatostatin, and VIP interneurons) and observe whether 

there is colocalization between internodes of newly generated oligodendrocyte with 

interneuronal processes. It is possible that newly formed oligodendrocytes might myelinate both 

excitatory and inhibitory neurons. Nonetheless, to distinguish oligodendrocytes myelinating 

inhibitory or excitatory neurons is rather simple. It has been shown that oligodendrocytes 

myelinate either inhibitory or excitatory neurons, but very rarely both (Zonouzi et al. 2019). 
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However, it is not known the situation after VPA or after other experience-dependent 

myelination. The reason behind this bias is yet unknown. However, such bias might be related to 

the recently described heterogeneity of the oligodendrocyte population, suggesting that 

different cells might have different targets (Marques et al. 2016). Whether this heterogeneity is 

sustained from different progenitors remains open. 

 

Possible mechanism of action of VPA 

 The analysis how VPA modifies the behavior of NG2-glia is challenging due to the multiple 

effects of exercise in the organism (Fig. 27). I based our assumption that VPA promotes neuronal 

activity in the cortex because, after exercise, there is an increased of glucose consumption in the 

motor cortex and regional CBF (Vissing, Andersen, and Diemer 1996; Hiura et al. 2018). 

Therefore, the signal released from neurons should be activity-dependent. I have hypothesized 

that neuronal signals are integrated into NG2-glia through neuron-NG2-glia synapses. It is known 

that NG2-glia  

Figure 27. Possible mechanism in which VPA induce changes in NG2-glia behavior. VPA can lead to increase 
neuronal activity and increase release of neurotransmitters, such as glutamate, which is detected by NG2-glia 
through the neuron-NG2-glia-synapse. Another mechanism could be involving activity-dependent axonal secretion, 
such as BDNF, which is independent of synapses. Finally, VPA could increase the release of signals from the blood 
stream, crossing the blood-brain barrier, and inducing changes in NG2-glia behavior. 
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form synapses with axons in the adult CNS (Bergles et al. 2000; De Biase, Nishiyama, and Bergles 

2010; Kukley, Capetillo-Zarate, and Dietrich 2007; Ziskin et al. 2007). Although the function of 

these structures remains unknown, synaptic signaling is a suitable mechanism for monitoring 

neuronal activity and, in turn, commanding the changes in the behavior of NG2-glia in an activity-

dependent manner. Notably, it has been shown that NG2-glia downregulate their synapses 

during their differentiation into myelinating oligodendrocytes, but they conserve them during 

proliferation (Kukley, Nishiyama, and Dietrich 2010; Kukley et al. 2008). Two conclusions can be 

extracted from this evidence. First, synapses are required in the lifetime of a NG2-glia. Second, 

they become dispensable as soon as they become oligodendrocytes. 

I have observed that VPA increases the differentiation of NG2-glia, and this process is 

limited to a population of progenitors, inferred by the lack of correlation between the exercise 

performance of animals and their capacity to form oligodendrocytes. From our proteome 

analysis, I proposed that the NG2-glia having a high expression of synaptic-related and 

glutamatergic signaling pathway-related proteins are the ones responding to VPA by 

differentiating into oligodendrocytes (Fig. 13). Conversely, NG2-glia with low synaptic-related 

proteins remain as progenitors, and simultaneously they seem to have low levels of proteins 

related to myelin, myelin assembly, oligodendrogenesis, and cell differentiation (Fig. 13). This 

body of evidence suggest that synapses are essential for NG2-glia differentiation, and those cells 

that form few synapses or none remain as progenitors. 

 To my knowledge, it has not been addressed whether all NG2-glia receive synaptic input 

and, moreover, whether NG2-glia have synapses during every stage of the organism or cell 

development (Fig. 14b).  Interestingly, the total number of GPR17+ NG2-glia increased, which is 

a population that is resistant to differentiate under physiological and VPA conditions. Therefore, 

it would be of interest to describe the electrophysiological properties of these cells and their 

synaptic inputs. It is feasible that GPR17+ NG2-glia do not form synapses with neurons; and thus, 

they remain unresponsive to the stimulus provided by VPA. In this direction, so far, our group has 

developed a transcriptome database, through a Cre-lox system involving the ribotag mouse line 

(Sanz et al. 2009) together with the Cre-driver mouse lines of GPR17i-CreERT2 and the NG2-

CreERT2. This strategy has been performed in a way to compare the transcriptomic profile of the 



Discussion and future perspectives 
 

137 
 

GPR17+ NG2-glia compared to the total progenitors' population, which might worth the effort to 

help elucidate further whether there are differences in the expression of synaptic proteins 

(Nicole Unger’s doctoral thesis). 

 As already mentioned, our proteome analysis revealed a possible relationship between 

differentiation and synapses. This evidence raised questions about the role of these synapses.  

Are NG2-glia synapses required only for neuronal activity detection? Or are they necessary for 

normal physiological differentiation of NG2-glia? These questions have been rather difficult to 

resolve due to the high functional complexity of the structures. For instance, it has been shown 

that NG2-glia respond to glutamate by reducing the proliferation and increasing their 

differentiation of NG2-glia. However, other reports have shown that neuron-NG2-glia synapses 

function is highly dependent on the specific molecular context like the specific properties of 

AMPA receptors and activated signaling pathways that turn NG2-glia more sensitive to glutamate 

(Lundgaard et al. 2013; Chen et al. 2018). 

 The intricate nature of NG2-glia receptors leads us to look for a different strategy to 

approach the function of neuron-glia synapses, which might as well provide valuable information 

to the field. This objective was challenging due to the lack of knowledge in comparison to the 

neuronal synapses’ counterpart. To ensure a successful selection of a protein target, I followed 

the next assumptions: Firstly, and perhaps most adventurous, I assumed that the structure of 

neuron-NG2-glia synapses was like the neuronal ones.  Secondly, I searched for a structural 

protein that could be potentially expressed in every NG2-glia synapse.  Fourthly, I looked at the 

available open-sourced transcriptomic data (Zhang et al. 2014), to get insights over the 

expression of these proteins in NG2-glia, which I were able to corroborate with our adult NG2-

glia transcript database generated by the ribotag mouse line (Nicole Unger’s doctoral thesis). 

 Under this premise, I observed that the novel postsynaptic scaffold protein Shank3 was 

expressed at the transcriptome level in NG2-glia (Zhang et al. 2014). It has been described that 

this protein is essential for postsynaptic assembly, formation, and maintenance in neurons (Tu et 

al. 1999; Arons et al. 2012). Taking all this evidence into consideration, with the collaboration of 
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Prof. Dr. Tobias Böckers at Ulm University, I generated the novel Sox10-iCreERT2 x Shank3-fl x 

CAG-GFP mouse line (Fig. 23a). 

 Initial steps involved the characterization of the mouse line by confirming that genes were 

in the transgenic model and the functionality of the inducible Cre-lox system. Additionally, I 

observed that GFP reporter expression was restricted to the oligodendrocyte lineage (Fig. 23b – 

23f). Furthermore, I found that GFP reporter in Shank3wt/wt mice colocalized with Shank3  in a 

punctated manner and had a wide distribution in processes and soma (Fig. 24), resembling the 

characteristics of the signal in neurons (Arons et al. 2012; Heise et al. 2016).  Additionally, I 

observed that Shank3 puncta signal in NG2-glia colocalized with Bassoon, a presynaptic marker 

on neurons (Fig. 24). This first step might indicate that Shank3 is expressed in NG2-glia and might 

be a constituent of neuron-NG2-glia synapses. Finally, and most notably, our preliminary data on 

the affected motor behavior suggest that Shank3 deletion in the oligodendrocyte lineage led to 

substantial motoric deficits, including clasping behavior and worsen performance in the beam 

walk and rotarod test (Fig. 25). Because of the preliminary nature of this data, all interpretations 

must be taken carefully at this point, and it is imperative in the future to further characterize this 

mouse model, albeit it provides fertile ground for future projects. 

For instance, autism spectrum disorders (ASD) are thought to be based on 

synaptopathies; therefore, many of the mouse models have a mutation or deletion of synaptic 

protein such as the Shank family of scaffold proteins (Monteiro and Feng 2017). Furthermore, 

haploinsufficiency of Shank3 has been successfully correlated to the Phelan-McDermid 

syndrome, a rare monogenic neurodevelopmental disorder within ASD (De Rubeis et al. 2018; 

Wilson et al. 2003; Durand et al. 2007). Nonetheless, it might be wrong to assume that other cell 

populations are not affected by these genetic modifications. Studies tackling this point are 

recently developing. The first compelling evidence gathered by MRI has shown that WM 

aberrations, which might be associated with myelin integrity, occur in Phelan-McDermid patients 

and Shank3 knockout mice (Jesse et al. 2020). Because NG2-glia synapses had been overlooked 

in this field, our novel mouse model become attractive to further dissect the role of Shank3 in 

the oligodendrocyte lineage.  
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From our early evidence, it is tempting to suggest that the deletion of Shank3 decreases 

the degree of differentiation of NG2-glia due to impairment in the synaptic communication 

between neurons and NG2-glia. Our group has shown that preventing the generation and 

integration of new oligodendrocytes evokes severe motor impairments in mice (Schneider et al. 

2016). Additionally, in Shank3 knockout mouse models, minor to critical motor behavior 

impairments have been observed, depending on the site of gene deletion (Monteiro and Feng 

2017). Furthermore, hindlimbs clasping has been described in other models for ASD (Schmeisser 

et al. 2012; Gemelli et al. 2006), supporting the results observed by the deletion of Shank3 in the 

oligodendrocyte lineage. Phelan-McDermid patients present neurological deficits as hypotonia, 

gait disturbance, upper motor neuron dysfunction, motor planning, and gross motor 

coordination abnormalities (Soorya et al. 2013; Zwanenburg et al. 2016). Thus, it seems that our 

Sox10-iCreERT2 x Shank3-fl x CAG-GFP mice could provide further information of the possible 

role of the oligodendrocyte lineage in some of the features of the disease. 

There is still a long way to have reliable conclusions. Again, the mouse model promises 

not only to be useful for the study of neuron-NG2-glia synapses but also to understand better 

the role of the oligodendrocyte lineage in ASD. In future research, I would like to investigate the 

role of Shank3 in the oligodendrocyte lineage in different developmental stages as well as their 

synaptic input and synapse integrity. Additionally, it might be of interest to analyze in detail NG2-

glia proliferation and differentiation after Shank3 deletion and further analyze the behavioral 

impairments common in patients and other ASD mouse models.  

Leaving neuron-NG2-glia synapse aside, initially on this discussion, I acknowledged that 

because of the nature of VPA, a wide array of signaling pathways are active that could potentially 

have robust effects on the brain and NG2-glia. In particular, the BDNF pathway captivated my 

attention. BDNF is a member of the neurotrophic factor family that activates the tropomyosin 

receptor kinase B (TrkB), a member of the tyrosine kinase receptors. BDNF has a vast number of 

functions, such as promoting neurogenesis, synaptic plasticity, cell growth, and survival, just to 

mention a few of them (Mattson, Maudsley, and Martin 2004). 
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 Interestingly, BDNF is released by exosome from neurons in an activity-dependent 

manner (Wong et al. 2015), making it a suitable signal for NG2-glia to screen neuronal activity. 

Impressively, it has been shown that BDNF increases its expression in the brain in running mice, 

which positively correlates with exercise performance (Neeper et al. 1995). This situation might 

be the same case in humans as BDNF blood serum levels raise 2 – 3-folds during exercise, which 

has been estimated that the brain might contribute to 70 – 80% of the total production 

(Rasmussen et al. 2009). This body of evidence highlights that BDNF possibly has local and 

systemic targets in the organism. 

 As briefly mentioned before, BDNF has been widely described as a promoter for 

neurogenesis, which might represent the link between the formation of newly generated 

neurons, exercise, and cognitive enhancement (Cefis et al. 2019; Ji et al. 2014). Nonetheless, the 

first description of a BDNF knockout mouse line revealed that these mice showed a reduction in 

myelin proteins, and in the number of oligodendrocytes, as well as hypomyelination (Djalali et al. 

2005; Cellerino et al. 1997). It has also been described that the complete oligodendrocyte lineage 

does express the TrkB receptor (Van't Veer et al. 2009; Du et al. 2003), making them a possible 

target for this neurotrophin.  Currently, there is still little knowledge about the effect of BDNF in 

the oligodendrocyte lineage. Nevertheless, it has been described that it might regulate 

proliferation and differentiation of NG2-glia, as well as survival and myelin thickness in 

oligodendrocytes (Du et al. 2003; Fletcher, Murray, and Xiao 2018; Van't Veer et al. 2009; 

Nicholson et al. 2018; Tsiperson et al. 2015; Cohen et al. 1996).  

 Notably, I observed in our proteome data that NG2-glia not reactive to VPA showed a 

downregulation of proteins involved in the BDNF signaling pathway (Fig. 13). PI3K/Akt is a classic 

signaling route activated by the association of BDNF with the TrkB receptor (Chao 2003). This 

evidence might suggest that BDNF plays a role in NG2-glia differentiation after VPA. It has been 

previously shown that inducible conditional knockout of the TrkB receptors in NG2-glia abolish 

their differentiation and myelin plasticity after optogenetic stimuli of neurons (Geraghty et al. 

2019). Additionally, the same mouse model showed impairment in working memory, which the 

authors assumed was due to reduced oligodendrogenesis (Geraghty et al. 2019). Additionally, I 

observed in our proteome that proteins related to synapses and glutamatergic signaling 
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pathways seem to be necessary for the formation of newly oligodendrocytes induced by VPA (Fig. 

13). Previous research has found that BDNF is needed to shift NG2-glia differentiation from being 

glutamate/NMDAR-independent to –dependent (Lundgaard et al. 2013). Thus, I suggest that VPA 

requires signals provided by BDNF and the synaptic communication to promote differentiation. 

 In the future, it would be interesting to test whether the BDNF/TrkB activation in NG2-

glia plays a role in their differentiation as well as the oligodendrogenesis-dependent cognitive 

enhancement by VPA. To analyze BDNF function in oligodendrocyte progenitors, it is feasible to 

use pharmacological approaches by using the commercially available TrkB agonist, 7,8-

dihydroxyflavone (7,8-DHF), and antagonist, ANA-12. Nonetheless, this strategy could lead to 

confounding factors because neurogenesis is also regulated by BDNF (Cefis et al. 2019; Ji et al. 

2014). A more promising experimental approach might be obtaining the commercially available 

TrkB-flox mouse line (MMRRC) (Geraghty et al. 2019) and pair it with our Cre-driver mouse lines 

such as Sox10-iCreERT2 or NG2-CreERT2. Afterward, I could confirm the role of BDNF by analyzing 

the differentiation properties of NG2-glia and in behavioral paradigms, e.g., NOR whether 

cognitive enhancement evoked by VPA is abolished. 

 As I mentioned earlier, other signals of action might occur at the systemic level. For 

instance, it has been shown that, after exercise, glucocorticoids significantly augment in the 

plasma of rodents and even in humans after brief periods of high-intensity of locomotor activity 

(Borer et al. 1992; Buono, Yeager, and Hodgdon 1986; Coleman et al. 1998). Glucocorticoids are 

a class of corticosteroids, which are steroid-based hormones that interact with the nuclear 

receptor, the glucocorticoid receptor (GR). Most of the glucocorticoids are produced in the 

adrenal gland, and afterward, they can cross the BBB (Mason et al. 2010). Like many other cells, 

NG2-glia express the GR1, and prolonged treatment to corticosterone lead to a decrease in their 

proliferation (Alonso 2000; Matsusue et al. 2014). Furthermore, it has been shown that rabbit 

pups treated with synthetic glucocorticoids, as dexamethasone or betamethasone, showed 

hypomyelination, reduced oligodendrogenesis, and reduced NG2-glia proliferation, as well as, 

reactive gliosis (Zia et al. 2015). 
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 Most research in regard to glucocorticoids suggest that they have a detrimental effect on 

the oligodendrocyte lineage as it has been shown in several stress models (Yang et al. 2016; Luo 

et al. 2019; Banasr et al. 2007), as these molecules are released under systemic stress conditions. 

Nonetheless, it could be that in the context of VPA, glucocorticoids promote differentiation of 

NG2-glia. As a byproduct of this doctoral thesis, I have generated a mouse line that deletes GR 

explicitly from the oligodendrocyte lineage by paring our Sox10-iCreERT2 mouse line with the 

GR1-fl mouse line, kindly provided by Prof. Dr. Jan Tuckermann from Ulm University.  

Our data suggest that the deletion of GR in the oligodendrocyte lineage enhanced the 

proliferation and differentiation of NG2-glia (data not shown). Therefore, glucocorticoids might 

negatively regulate oligodendrogenesis. This evidence provides an exciting insight, whether, the 

expression and activity of GR are distinct among within the NG2-glia population. Thus, it could 

bring an interesting point to analyze the response of glucocorticoids in, e.g., GPR17+ NG2-glia, 

which I believe is a cell population less committed to differentiating under VPA conditions. 

 

Exercise and NG2-glia, a target for a possible treatment? 

An essential objective in neuroscience is to translate basic purposed research to the 

benefit of people's well-being. Therefore, this doctoral thesis has a section that aims to 

contextualize our results in possible therapies that involve exercise and significant aspects to take 

into consideration for related treatments. 

It is widely described that exercise has massive benefits for health and reduces the risk of 

developing chronic metabolic diseases, such as diabetes, obesity, cardiovascular diseases, and 

protects mental health (Rodriguez-Ayllon et al. 2019; Booth et al. 2008). Additionally, it is 

believed that increased physical activity might have not only defensive features but also 

regenerative ones.  

Multiple sclerosis (MS) is an immune-mediated disease which damage is caused by 

exacerbated inflammation in the CNS, leading to loss of myelin and neurodegeneration (Franklin 

and Ffrench-Constant 2008). Although, in some cases, remyelination happens naturally at the 



Discussion and future perspectives 
 

143 
 

early stages of the disease, later in the progression of the disease the formation of new myelin 

fails and progressively deteriorates. This failure has been attributed to changes in the CNS 

environment, making it increasingly more hostile or restrictive to ensure successful 

remyelination. Therefore, it is thought that the manipulation of NG2-glia behavior could help the 

system to remyelinate and to improve the outcome of the disease. In this work, I have shown 

that increased physical activity promotes NG2-glia proliferation and differentiation, and possibly 

myelination in the CNS. Hence, it results naturally to think that exercise could have potential 

therapeutic properties for treating MS. Unfortunately, although there is promising evidence that 

training can be beneficial for the rehabilitation of MS patients, it is still inconclusive (Motl et al. 

2017), reinforcing the notion that more research has to be done.   

There is a downside, nonetheless. Due to the complex heterogeneity of MS, and many 

features not well understood yet, there is no single model that covers all aspects of the illness. 

Nevertheless, experimental approaches based on toxin-induced demyelination (cuprizone and 

LPC) and of the increase of the autoimmune response towards myelin, like in the experimental 

autoimmune encephalomyelitis (EAE), have provided invaluable insights into the field.  

It has been shown that after twenty weeks post-induction of EAE, mice presented 

cognitive deficits as well as reduction of MBP+ and CNPase+ cells, probably indicating a decrease 

in the number of oligodendrocytes. However, after four weeks of forced running, mice improved 

the lack of both markers for myelinating cells and ameliorated their cognitive impairment (Sung, 

Lim, and Mao 2003). Similar results have been found in cuprizone models. It has been shown that 

cuprizone reduces the oligodendrocytes and myelin, which is reversed by forced and voluntary 

exercise. One of the studies has suggested that this mechanism of recovery might be regulated 

by the increase in neurotrophins, including BDNF (Naghibzadeh et al. 2018; Mandolesi et al. 

2019). Nevertheless, these experiments have been performed administering cuprizone and at 

the same time increased physical activity. Additionally, it has been shown that physical activity 

before EAE induction is protective by delaying disease onset and reducing clinical score (Le Page, 

Ferry, and Rieu 1994; Bernardes et al. 2013), making it unclear whether exercise prevented 

oligodendrocyte death or promoted oligodendrogenesis. Moreover, the participation of NG2-glia 

in these processes remains uncertain because the empirical framework has been limited to 
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analyzing only the oligodendrocyte population. Only a recent study has shown that two weeks of 

increased physical activity improve the demyelinated injury, inflicted by LPC injection in the CC, 

proposing that it is due to enhanced proliferation and differentiation of NG2-glia, leading to 

faster remyelination in running animals (Jensen et al. 2018).    

Which mechanisms might be promoted by exercise to induce NG2-glia differentiation and 

convey remyelination? Extrapolating our results and studying the literature, VPA may enhance 

the neuronal activity, which seems to be a substantial factor for remyelination promoted by NG2-

glia differentiation in a glutamate-dependent pathway (Gautier et al. 2015). This can happen 

together with the exercise-induced synthesis of BDNF in the brain and increment in blood serum 

(Neeper et al. 1995; Rasmussen et al. 2009), which in turn increases the susceptibility of NG2-glia 

to neurotransmitters, like glutamate (Lundgaard et al. 2013). 

Could it be a remyelination mechanism that is independent of the formation of new 

oligodendrocytes? Recent evidence in MS patients suggests that progenitors’ proliferation and 

oligodendrogenesis are rather rare events in remyelinating injuries, and the formation of new 

myelin sheaths come from previously established oligodendrocytes (Jakel et al. 2019; Yeung et 

al. 2019). This idea has been corroborated to some extent by evidence in the rhesus monkey 

brains showing that previously integrated oligodendrocytes can form new myelin sheaths 

(Duncan et al. 2018). Although this is not the newest idea, it defyies the strong concept in the 

field that oligodendrocytes have only a short window of time for myelinating axons (Czopka, 

Ffrench-Constant, and Lyons 2013). It is possible that exercise mandates oligodendrocytes to 

form new myelin sheaths. To tackle this question, I propose to use the inducible Cre-lox reporter 

systems under classic promoters for myelinating oligodendrocytes and analyzing the myelination 

pattern after VPA by immuno-EM. Albeit, it must be recognized that current technologies and 

animal models often have severe limitations to answer this question. Moreover, it is also possible 

that these highly specialized function could be present only in primates. 

Exercise could be implemented as a proper therapy for aged individuals. It is known that 

cognition declines in healthy aging (Gazzaley et al. 2005). Among other things, decreased 

cognition has been related to diminished WM volume (Garde et al. 2000). This evidence is 
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supported by the fact that in healthy aging, there is a loss of WM volume and integrity in 

primates, and reduced oligodendrocyte health  (Wisco et al. 2008; Peters et al. 1996; Peters 1996; 

Guttmann et al. 1998). 

Interestingly, this deterioration of the WM happens beside the generation of new 

oligodendrocytes along life. In rodent models, it has been consistently shown that NG2-glia 

differentiate into oligodendrocytes, forming new myelin, until higher ages, although this process 

considerably slows down in aged individuals (Dawson et al. 2003; Dimou et al. 2008; Young et al. 

2013; Kang et al. 2010; Hill, Li, and Grutzendler 2018; Wang, Ren, et al. 2020). Recent data have 

shown that increasing the number of newly generated oligodendrocytes by clemastine, a first-

generation histamine H1 receptor antagonist, and approved medication for MS treatment (Green 

et al. 2017), improves cognitive performance in aged mice (Wang, Ren, et al. 2020). 

In the context of exercise, it has been shown that increased physical activity reduces the 

steepness of this deterioration, even in patients presenting dementia (Hillman, Erickson, and 

Kramer 2008; Heyn, Abreu, and Ottenbacher 2004). Considering our results, I have seen that even 

in older mice, VPA almost doubled the differentiation of NG2-glia compared with the sedentary 

mice (Fig. 16b). Therefore, it is possible that cognitive decline in running mice could be milder 

than in non-active mice due to the increments of NG2-glia differentiation. Although it must be 

considered that generating new oligodendrocytes does not necessarily translate in their 

incorporation into the brain. 

For successful treatments, it must be assessed the beneficial extension of therapies. First, 

the regenerative impact of exercise could be limited by the locomotor impairing nature of 

diseases like MS or even healthy aging. On one side, MS patients not only have dysfunctional 

motility but also very frequently have symptoms as increased fatigue perception and depression 

(Motl et al. 2017; Wood et al. 2013), which may act in detriment of the motivation for exercising. 

On the other hand, it has been shown that older individuals tend to have reduced aerobic fitness, 

stamina, and psychomotor speed (Spirduso 1980). Thus, physical therapies must come together 

with proper exercise planning and psychological support accordingly with individual patients. 
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 Second, intrinsic changes on oligodendrocyte progenitors, in their CNS environment, 

must be also taken into consideration. It has been described that the NG2-glia population shifts 

its expression profile with age (Marques et al. 2016). However, recent data suggest that stiffness 

of the nervous system surroundings, which is reduced with aging, has a more potent effect over 

NG2-glia behavior than their inherent properties (Segel et al. 2019). A similar situation happens 

in disease. In EAE and MS patients, NG2-glia have altered gene expression compared with the 

healthy individuals (Falcao et al. 2018; Jakel et al. 2019); moreover, the inflammatory activation 

might provide an extremely hostile environment (Franklin and Ffrench-Constant 2008). 

Third, plastic alteration in the NG2-glia population due to exercise might be well 

considered. I have shown that VPA induced changes in their protein profile that suggested a 

phenotype more resistant to differentiation (Fig. 13), which is coherent with the enrichment of 

GPR17+ NG2-glia in the motor cortex (Fig. 14). Most importantly, the persistent stimulus of VPA 

did not provide a further enhance oligodendrogenesis compared with the animals housed under 

standard conditions (Fig. 16), advocating reduced progenitor plasticity. Therefore, it could be 

promising to combine exercise therapies with pharmacological approaches. In the same line, it 

has been shown that combined treatments, e.g., exercise together with clemastine, have a 

synergistic effect on the improvement of remyelination (Jensen et al. 2018). This evidence reveals 

that non-VPA reacting NG2-glia retains their capacity to generate new myelinating cells. In our 

specific situation, it might be helpful to resort to drugs that target the GPR17 receptor, e.g., the 

P2Y purinergic receptor antagonist cangrelor, which has been shown to promote differentiation 

of oligodendrocyte progenitors (Lecca et al. 2008). Albeit, its specific pharmacodynamics has 

been debated during the last years. Thus, in the future, in combination with exercise-based 

treatments, drugs probably should be applied simultaneously to improve the outcome in 

patients. 
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Conclusion 

NG2-glia are an exciting cell population that have been very recently accredited as the 

fourth major glial population. Their distribution in the brain, their long-lasting capacities to 

proliferate and differentiate, and their reaction towards neuronal activity, experiences, and 

disease have captivated the attention of many scientists. 

In this doctoral thesis, I have explored the response of NG2-glia to VPA, a model to analyze 

the effect of voluntary incremented physical activity on the progenitor population. Due to my 

research, I have successfully deepened our knowledge on the dynamics of NG2-glia behavior 

after VPA. Moreover, I have presented several novel observations in the field of the 

oligodendrocyte lineage. First, the reaction of NG2-glia appears to be heterogeneous within the 

progenitors’ population, being some cells more sensitive to VPA than others, illustrating the 

importance of studying the differences within the progenitor population to understand their role 

in the CNS.  Second, I described a mechanism that reduces the global plasticity of NG2-glia by 

shifting the population towards a less reactive identity after continuous physiological stimuli. This 

evidence is a significant discovery because limitations to adaptive myelination have not been 

described previously and could result in severe restrictions to research and to treatments based 

on myelin plasticity. Finally, for the first time, it has been shown that oligodendrogenesis is 

necessary for exercise-induced cognitive enhancement. This is unprecedented because it shows 

for the first time the consequences of the generation of new oligodendrocyte in apparently two 

unrelated events: the increase of physical activity and the improvement of learning and memory, 

a process thought to be entirely dependent of neurons. 

I regret to finish this thesis with some unanswered questions. In this work, based on our 

proteome analysis, I have characterized the population of NG2-glia after VPA and compared it to 

a sedentary group. I could identify that several signaling pathways were downregulated in NG2-

glia that did not differentiate after VPA. Among them, I suggested that communication through 

neuron-glia synapses and the BDNF/TrkB signaling pathway might be the molecular mediators to 

induce the formation of oligodendrocytes after VPA. As I discussed, it would be exciting to 
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confirm their role in adaptive myelination influenced by VPA. I also believe that it would be 

fascinating to describe in more detail the effect of Shank3 deletion in the oligodendrocyte lineage 

and to comprehend the role of the oligodendrocyte lineage in neurodevelopmental psychiatric 

disorders like ASD. Finally, it would be interesting to analyze the circuits that are remodeled by 

myelination after VPA, particularly changes involving the motor cortex. The importance of 

understanding the myelination pattern of axons in the brain under different conditions might 

reveal invaluable information regarding the circuit functionality in different brain regions. It 

would be interesting in the future to have a database with information regarding the distribution 

of internodes in the CNS under physiological and pathological conditions, the “myelinome.”  

Finally, we have seen that in recent years, research of NG2-glia and other glial cells have 

been gaining ground in the neuroscience field. Hopefully, the significance of each cell population 

for the proper function of the nervous system makes us think over the popular term for glial cells 

as “supportive cells.” As Prof. Bruce Ransom suggested, perhaps neuroscientists should start 

calling glial cells: “partner cells.”
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Supplemental Table 1. Absolute numbers of proliferating cells (BrdU+ cells), NG2-glia (NG2+ cells), 
proliferating NG2-glia (NG2+BrdU+ cells), and newly generated oligodendrocyte (CC1+BrdU+ cells) in 

C57Bl/6 wildtype mice in cerebral GM motor cortex and piriform cortex, and WM at different time points 

after VPA. Data are presented as mean ± SEM. 

Brain 
Region 

Marker 
2w control 
[cells/mm2] 

2w VPA  
[cells/mm2] 

4w control 
[cells/mm2] 

4w VPA  
[cells/mm2] 

Recovery 
[cells/mm2] 

 BrdU+ 111.20 ± 5.81 
132.60 ± 

3.95 
130.30 ± 9.82 186.60 ± 16.27 

115.60 ±  
41.56 

GM 
Motor 
Cortex 

NG2+ 230.50 ± 16.08 
245.00 ± 

11.82 
240.90 ± 15.11 230.20 ± 9.18 209.40 ± 11.91 

 NG2+BrdU+ 90.46 ± 6.03 
107.50 ± 

3.77 
98.51 ± 5.88 24.77 ± 12.38 82.91 ± 13.11 

 CC1+BrdU+ 16.26 ± 2.22 28.41 ± 2.84 18.40 ± 3.21 42.34 ± 5.11 26.59 ± 6.09 

       

 BrdU+ - - 427.50 ± 17.20 417.70 ± 18.37 - 

Corpus 
Callosum 

NG2+BrdU+ - - 139.90 ± 24.94 151.60 ± 20.31 - 

 CC1+BrdU+ - - 140.50 ± 15.3 147.30 ± 8.37 - 

       

 BrdU+ - - 167.40 ± 18.59 152.1 ± 24.29 - 

GM 
Piriform 
Cortex 

NG2+BrdU+ - - 114.50 ± 14.62 107.90 ± 23.95 - 

 CC1+BrdU+   21.79 ± 0.95 23.25 ± 5.03 - 

 

Supplemental table 2. Absolute number of iNGOLs (GFP+CC1+BrdU+ and CC1+BrdU+ cells), dNGOLs 

(GFP+CC1+ but BrdU- cells), and total NGOLs (iNGOLs + dNGOLs) in NG2-CreERT2 x CAG-GFP mice in the 

cerebral GM motor cortex after VPA. Data are presented as mean ± SEM. 

 6w control [cells/mm2] 6w VPA [cells/mm2] 

iNGOLs 40.37 ± 4.28 60.12 ± 6.52 

dNGOLs 41.01 ± 6.35 99.39 ± 14.45 

Total NGOLs 80.46 ± 8.68 159.50 ± 20.22 

 

Supplemental table 3. Absolute number of GPR17+ NG2-glia (GFP+GPR17+ cells) in Sox10-GFP mice in the 

cerebral GM motor cortex at different time points after VPA. Data are presented as mean ± SEM. 

 
2w control 
[cells/mm2] 

2w VPA 
[cells/mm2] 

4w control 
[cells/mm2] 

4w VPA 
[cells/mm2] 

GFP+GPR17+ 102.50 ± 14.82 215.80 ± 33.59 112.00 ± 11.17 157.50 ± 10.17 
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Supplemental table 4. Absolute number of recombined (GFP+ cells) GPR17+ NG2-glia that remain NG2-

glia (GFP+NG2+ cells) or differentiated (GFP+CC1+ cells) in GPR17iCreERT2 x CAG-GFP at different time 

points after VPA. Data presented as mean ± SEM. 

 
2w control 
[cells/mm2] 

2w VPA 
[cells/mm2] 

4w control 
[cells/mm2] 

4w VPA 
[cells/mm2] 

6w control 
[cells/mm2] 

6w VPA 
[cells/mm2] 

GFP+NG2+ 142.80 ± 4.28 180.10 ± 18.84 149.90 ± 13.06 174.30 ± 20.19 171.80 ± 7.99 192.40 ± 11.35 

GFP+CC1+ 26.29 ± 3.65 25.25 ± 3.20 31.19 ± 2.90 32.82 ± 2.08 41.41 ± 3.94 62.45 ± 5.26 

 

Supplemental table 5. Absolute number of recombined (GFP+) cells and the total number of newly 

generated oligodendrocytes (total differentiation = GFP+CC1+ and CC1+BrdU+ cells) in NG2-CreERT2 x CAG-

GFP mice in cerebral GM motor cortex after different time points after VPA. Data are presented as mean 
± SEM. 

 
Control  

[cells/mm2] 
6w VPA  

[cells/mm2] 
Extensive VPA  

[cells/mm2] 

GFP+ 184.80 ± 11.38 219.10 ± 7.69 182.90 ± 13.65 

Total differentiation 36.26 ± 6.17 59.12 ± 3.21 31.72 ± 4.78 

 

Supplemental table 6. Absolute number of newly generated myelinating oligodendrocytes (MAG+GFP+ 

cells) in NG2-CreERT2 x CAG-GFP mice in the cerebral GM motor cortex after VPA. Data are presented as 

mean ± SEM. 

  
6w Control  
[cells/mm2] 

6w VPA  
[cells/mm2] 

Bin 1 6.38 ± 1.41 21.76 ± 4.81 

Bin 2 16.53 ± 2.69 30.13 ± 5.44 

Bin 3 7.54 ± 1.50 37.44 ± 6.30 

Average whole cortex 10.15 ± 1.30 29.78 ± 5.27 

 

Supplemental table 7. Weekly average and total average of the running performance (km/d) of Sox10-

Esco2wt/wt and Sox10-Esco2flx/flx mice. Data are presented as mean ± SEM. 

 
Sox10-Esco2wt/wt 

[km/d] 
Sox10-Esco2flx/flx 

[km/d] 

Week 1 2.92 ± 0.88 1.57 ± 0.71 

Week 2 9.51 ± 1.70 5.02 ± 1.46 

Week 3 12.66 ± 1.45 9.09 ± 2.36 

Week 4 13.72 ± 1.40 8.99 ± 1.77 

Week 5 13.21 ± 2.37 11.85 ± 1.94 

Week 6 14.24 ± 2.32 12.10 ± 1.57 

Average per day (whole period) 11.26 ± 1.76 8.68 ± 1.54 
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Supplemental table 8. Total distance traveled (cm) and average speed achieved (cm/s) of Sox10-Esco2wt/wt 

and Sox10-Esco2flx/flx mice with and without VPA during the habituation phase. Data are presented as 

mean ± SEM. 

 
No VPA Sox10-

Esco2wt/wt 
[cm] 

No VPA Sox10-
Esco2flx/flx 

[cm] 

VPA Sox10-
Esco2wt/wt 

[cm] 

VPA Sox10-
Esco2flx/flx 

[cm] 

Habituation 1.1 3060.0 ± 226.1 3845.0 ± 196.3 3595.0 ± 254.7 3441.0 ± 240.7 

Habituation 1.2 2249.0 ± 219.7 3106.0 ± 218.2 2994.0 ± 161.7 2661.0 ± 271.8 

Habituation 2.1 2220.0 ± 143.9 2668.0 ± 287.5 3038.0 ± 110.5 3008.0 ± 189.6 

Habituation 2.2 1842.0 ± 547.0 2661.0 ± 282.8 2877.0 ± 264.9 3107.0 ± 276.9 

Habituation 3.1 2150.0 ± 190.0 2598.0 ± 336.4 3222.0 ± 170.5 2855.0 ± 382.9 

Habituation 3.2 2183.0 ± 162.0 2716.0 ± 158.3 2854.0 ± 604.1 2550.0 ± 442.6 

     

 
No VPA Sox10-

Esco2wt/wt 
[cm/s] 

No VPA Sox10-
Esco2flx/flx 

[cm/s] 

VPA Sox10-
Esco2wt/wt 

[cm/s] 

VPA Sox10-
Esco2flx/flx 

[cm/s] 

Habituation 1.1 5.10 ± 0.38 6.41 ± 0.33 6.00 ± 0.42 5.76 ± 0.41 

Habituation 1.2 3.75 ± 0.37 5.18 ± 0.37 5.01 ± 0.27 4.44 ± 0.45 

Habituation 2.1 3.72 ± 0.25 4.45 ± 0.48 5.07 ± 0.18 5.09 ± 1.07 

Habituation 2.2 3.08 ± 0.29 4.44 ± 0.47 4.80 ± 0.44 5.19 ± 0.46 

Habituation 3.1 3.59 ± 0.32 4.33 ± 0.56 5.53 ± 0.16 4.76 ± 0.64 

Habituation 3.2 3.64 ± 0.27 4.53 ± 0.26 4.78 ± 0.36 4.25 ± 0.74 

 

Supplemental table 9. Average exploration time (s) spent by objects of Sox10-Esco2wt/wt and Sox10-

Esco2flx/flx mice with and without VPA during familiarization and novel object recognition phases. Average 

recognition index score obtained of Sox10-Esco2wt/wt and Sox10-Esco2flx/flx mice. Data are presented as 

mean ± SEM. 

 
No VPA Sox10-

Esco2wt/wt 
[s] 

No VPA Sox10-
Esco2flx/flx 

[s] 

VPA Sox10-
Esco2wt/wt 

[s] 

VPA Sox10-
Esco2flx/flx 

[s] 

     

Familiarization phase     

Left object 11.21 ± 0.84 11.30 ± 1.51 11.06 ± 1.10 10.12 ± 0.98 

Right object 8.79 ± 0.84 8.70 ± 1.51 8.94 ± 1.10 9.88 ± 0.98 

     

Novel object recognition phase     

Familiar object 7.19 ± 0.65 7.28 ± 0.61 4.56 ± 0.71 7.72 ± 0.65 

Novel object 12.81 ± 0.65 12.72 ± 0.61 15.44 ± 0.71 12.28 ± 0.65 

     

 
No VPA Sox10-

Esco2wt/wt 
No VPA Sox10-

Esco2flx/flx 
VPA Sox10-
Esco2wt/wt 

VPA Sox10-
Esco2flx/flx 

Recognition index 0.28 ± 0.07 0.27 ± 0.06 0.54 ± 0.07 0.23 ± 0.06 
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Supplemental table 10. Absolute number of proliferating neuroblasts (DCX+EdU+ cells) in Sox10-Esco2wt/wt 

and Sox10-Esco2flx/flx mice with and without VPA in the hippocampal subgranular zone of the dentate 

gyrus. Data are presented as mean ± SEM. 

 
No VPA Sox10-

Esco2wt/wt 
[cells/mm2] 

No VPA Sox10-
Esco2flx/flx 

[cells/mm2] 

VPA Sox10-
Esco2wt/wt 

[cells/mm2] 

VPA Sox10-
Esco2flx/flx 

[cells/mm2] 

DCX+EdU+ 650.80 ± 73.09 858.80 ± 144.3 1477.00 ± 61.02 1361.00 ± 92.49 

 

Supplemental table 11. Percentage of successful beam crossing from the total number of crossings (%) in 

Shank3wt/wt and Shank3flx/flx mice. Data are presented as mean ± SEM. 

 
Shank3wt/wt 

[%] 
Shank3flx/flx 

[%] 

Week 13 100.00 ± 0.00 50.00 ± 50.00 

Week 14 100.00 ± 0.00 66.67 ± 33.33 

Week 15 100.00 ± 0.00 83.33 ± 16.57 

Week 16 100.00 ± 0.00 50.00 ± 50.00 

Week 17 100.00 ± 0.00 66.67 ± 0.00 

 

Supplemental table 12. Time of Shank3wt/wt and Shank3flx/flx mice spent on an accelerating rotarod. Data 

are presented as mean ± SEM. 

 
Shank3wt/wt 

[s] 
Shank3flx/flx 

[s] 

Week 13 232.20 ± 33.92 194.20 ± 25.54 

Week 14 240.40 ± 51.58 196.80 ± 38.83 

Week 15 265.50 ± 11.18 205.20 ± 14.50 

Week 16 286.50 ± 11.18 198.50 ± 63.50 

Week 17 267.30 ± 10.81 174.20 ± 10.17 
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