103 research outputs found

    Extracellular Vesicles:Novel Opportunities to Understand and Detect Neoplastic Diseases

    Get PDF
    With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies

    Picornavirus security proteins promote the release of extracellular vesicle enclosed viruses via the modulation of host kinases

    Get PDF
    The discovery that extracellular vesicles (EVs) serve as carriers of virus particles calls for a reevaluation of the release strategies of non-enveloped viruses. Little is currently known about the molecular mechanisms that determine the release and composition of EVs produced by virus-infected cells, as well as conservation of these mechanisms among viruses. We previously described an important role for the Leader protein of the picornavirus encephalomyocarditis virus (EMCV) in the induction of virus-carrying EV subsets with distinct molecular and physical properties. EMCV L acts as a 'viral security protein' by suppressing host antiviral stress and type-I interferon (IFN) responses. Here, we tested the ability of functionally related picornavirus proteins of Theilers murine encephalitis virus (TMEV L), Saffold virus (SAFV L), and coxsackievirus B3 (CVB3 2Apro), to rescue EV and EV-enclosed virus release when introduced in Leader-deficient EMCV. We show that all viral security proteins tested were able to promote virus packaging in EVs, but that only the expression of EMCV L and CVB3 2Apro increased overall EV production. We provide evidence that one of the main antiviral pathways counteracted by this class of picornaviral proteins, i.e. the inhibition of PKR-mediated stress responses, affected EV and EV-enclosed virus release during infection. Moreover, we show that the enhanced capacity of the viral proteins EMCV L and CVB3 2Apro to promote EV-enclosed virus release is linked to their ability to simultaneously promote the activation of the stress kinase P38 MAPK. Taken together, we demonstrate that cellular stress pathways involving the kinases PKR and P38 are modulated by the activity of non-structural viral proteins to increase the release EV-enclosed viruses during picornavirus infections. These data shed new light on the molecular regulation of EV production in response to virus infection

    Intracellular localisation and extracellular release of Y RNA and Y RNA binding proteins

    Get PDF
    Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners

    Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures

    Get PDF
    Extracellular vesicles (EV) in breast milk carry immune relevant proteins and could play an important role in the instruction of the neonatal immune system. To further analyze these EV and to elucidate their function it is important that native populations of EV can be recovered from (stored) breast milk samples in a reproducible fashion. However, the impact of isolation and storage procedures on recovery of breast milk EV has remained underexposed. Here, we aimed to define parameters important for EV recovery from fresh and stored breast milk. To compare various protocols across different donors, breast milk was spiked with a well-defined murine EV population. We found that centrifugation of EV down into density gradients largely improved density-based separation and isolation of EV, compared to floatation up into gradients after high-force pelleting of EV. Using cryo-electron microscopy, we identified different subpopulations of human breast milk EV and a not previously described population of lipid tubules. Additionally, the impact of cold storage on breast milk EV was investigated. We determined that storing unprocessed breast milk at −80°C or 4°C caused death of cells present in breast milk, leading to contamination of the breast milk EV population with storage-induced EV. Here, an alternative method is proposed to store breast milk samples for EV analysis at later time points. The proposed adaptations to the breast milk storage and EV isolation procedures can be applied for EV-based biomarker profiling of breast milk and functional analysis of the role of breast milk EV in the development of the neonatal immune system

    Activated T cells recruit exosomes secreted by dendritic cells via LFA-1

    Get PDF
    Contains fulltext : 79542.pdf (publisher's version ) (Closed access)Dendritic cells (DCs) are known to secrete exosomes that transfer membrane proteins, like major histocompatibility complex class II, to other DCs. Intercellular transfer of membrane proteins is also observed during cognate interactions between DCs and CD4(+) T cells. The acquired proteins are functional and play a role in regulation of immune responses. How membrane protein transfer is achieved and regulated is unclear. Here we show that T cells can recruit major histocompatibility complex class II-containing DC exosomes secreted in the extracellular milieu during cognate DC-T-cell interactions. Recruitment of these exosomes required T-cell activation and was dependent on leukocyte function-associated antigen-1 (LFA-1) rather than on T-cell receptor specificity. Indeed, inducing a high-affinity state of LFA-1 on resting T cells was sufficient to provoke exosome binding. These results imply that DC exosomes secreted in the extracellular milieu during cognate T-cell-DC interactions are targeted to T cells activated in that microenvironment

    Orally administered 5-aminolevulinic acid for isolation and characterization of circulating tumor-derived extracellular vesicles in glioblastoma patients

    Get PDF
    Background: In glioblastoma (GB), tissue is required for accurate diagnosis and subtyping. Tissue can be obtained through resection or (stereotactic) biopsy, but these invasive procedures provide risks for patients. Extracellular vesicles (EVs) are small, cell-derived vesicles that contain miRNAs, proteins, and lipids, and possible candidates for liquid biopsies. GB-derived EVs can be found in the blood of patients, but it is difficult to distinguish them from circulating non-tumor EVs. 5-aminolevulinic acid (5-ALA) is orally administered to GB patients to facilitate tumor visualization and maximal resection, as it is metabolized to fluorescent protoporphyrin IX (PpIX) that accumulates in glioma cell

    Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - An ISEV position paper

    Get PDF
    The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNAencoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolationmethods, optimisation of methodologies to isolate and characteriseminute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data

    Кераміка «terra sigillata» з с. Зимне на Волині

    Get PDF
    Стаття присвячена публікації чотирьох керамічних посудин типу «terra sigillata», знайдених на дні р. Луги у с. Зимне Володимир-Волинського району Волинської області. Попередній аналіз цих знахідок дозволяє віднести їх до Понтійського центру виробництва такого посуду. Вірогідним шляхом потрапляння цієї колекції на Волинь була готська експансія у Північне Причорномор’я

    Biological properties of extracellular vesicles and their physiological functions

    Get PDF
    María Yáñez-Mó#, Pia R.-M. Siljander#, Zoraida Andreu, Apolonija Bedina Zavec, Francesc E. Borràs, Edit I. Buzas, Krisztina Buzas, Enriqueta Casal, Francesco Cappello, Joana Carvalho, Eva Colás, Anabela Cordeiro-da Silva, Stefano Fais, Juan M. Falcon-Perez, Irene M. Ghobrial, Bernd Giebel, Mario Gimona, Michael Graner, Ihsan Gursel, Mayda Gursel, Niels H. H. Heegaard, An Hendrix30, Peter Kierulf, Katsutoshi Kokubun, Maja Kosanovic, Veronika Kralj-Iglic, Eva-Maria Krämer-Albers, Saara Laitinen, Cecilia Lässer, Thomas Lener, Erzsébet Ligeti, Aija Linē, Georg Lipps, Alicia Llorente, Jan Lötvall, Mateja Manček-Keber, Antonio Marcilla, Maria Mittelbrunn, Irina Nazarenko, Esther N.M. Nolte-‘t Hoen, Tuula A. Nyman, Lorraine O'Driscoll, Mireia Olivan, Carla Oliveira, Éva Pállinger, Hernando A. del Portillo, Jaume Reventós, Marina Rigau, Eva Rohde, Marei Sammar, Francisco Sánchez-Madrid, N. Santarém1, Katharina Schallmoser, Marie Stampe Ostenfeld, Willem Stoorvogel, Roman Stukelj, Susanne G. Van der Grein, M. Helena Vasconcelos, Marca H. M. Wauben and Olivier De WeverIn the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells.While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.Peer reviewe
    corecore