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Review

Extracellular Vesicles: Novel Opportunities
to Understand and Detect Neoplastic
Diseases

Laura Bongiovanni1,2,* , Anneloes Andriessen1, Marca H. M. Wauben1,
Esther N. M. Nolte-’t Hoen1, and Alain de Bruin1,2

Abstract
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport
biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue
homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and pro-
gression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent
exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential
applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be
detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on
EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in
EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues
can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that
pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and
their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.
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Extracellular vesicles (EVs) play an important roles in the main-

tenance of tissue homeostasis and pathogenesis. Due to their

small size, we are unable to see EVs by light microscopy, and

some of them can only be visualized by electron microscopy,

eventually with the use of immunogold labeling using specific

EV markers. Several techniques have been developed for the

collection and analysis of EVs from body fluids such as blood,

but it remains extremely difficult to isolate them directly from

tissues. EVs are effectively messages sent by cells that contain

specific “words” (bioactive molecules) and are used by cells to

communicate with other cells. Thus, the content of EVs is very

specific and makes them a highly attractive research topic. A

growing body of research aims to better elucidate the roles of

EVs in tissue development, maintenance, and function, as well

as in pathogenesis. Noteworthy, EV messages can have a local or

distant effect: They can act as paracrine agents when they are

released into the extracellular space or as endocrine agents when

they are released in the circulation and thereby affect distant

organs and cells. The molecular content of EVs in the blood

or in other body fluids can provide information about their tissue

of origin, allowing them to be used as biomarkers. As EVs can

target specific tissues and be taken up by specific cells, EVs can

be exploited to convey and deliver therapeutic molecules.

EV research in veterinary medicine is still at an early stage

and the literature is limited but enough to show the potential of

EV application in different fields of animal research and types

of disease: the published topics include canine and feline can-

cers and kidney diseases, bovine mammary and metabolic dis-

orders, and equine and bovine infectious diseases. However,

the majority of these studies are descriptive, for example, iso-

lating and characterizing EV size, morphology, antigens, or

molecular cargo. However, functional studies with rigorous

experimental validation are necessary to prove the role of EVs

in pathogenesis, such as studies where EVs are transferred in in
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vitro or in vivo models and consequent changes in gene expres-

sion, protein levels, or phenotypes are documented.80

Referring both to human and veterinary research works, the

present review is intended to briefly explain EVs’ biology and

their roles in tissue homeostasis, provide deeper insight in their

role in neoplasia and discuss potential applications of EVs as

biomarkers in different types of diseases. The current tech-

niques to isolate and analyze EVs will be also described, with

their main advantages and disadvantages. A final section

describes on how pathologists contribute to EV research, pro-

viding new perspectives and ideas for researchers and pathol-

ogists interested in working in this filed.

EV Classification and Biology

All EVs are naturally released by cells, are surrounded by a

lipid bilayer, and cannot replicate. Based on this definition

provided by the Minimal Information for Studies of Extracel-

lular Vesicles 2018 (MISEV2018),191 EVs are part of the com-

plete secretome of the cell and there are no specific markers to

distinguish EV subtypes and their subcellular origin. However,

differences exist that enable categorization of EVs into distinct

subclasses. There are 2 main classes of EVs—exosomes and

microvesicles—that mainly differ in their mode of biogenesis

rather than their size (Table 1, Fig. 1). Exosomes are small EVs

(*50–150 nm diameter) that arise in the endosomal system.

The endosomal system consists of highly dynamic membrane

compartments that actively interact to regulate the uptake of

molecules or ligands, their recycling to the cell surface, and

their degradation.73 Endosomes provide an intracellular envi-

ronment where molecules can be sorted prior to determining

their fate. Inward budding of the endosomal limiting membrane

leads to the formation of multivesicular bodies that direct

molecules to lysosomes for degradation or to the plasma mem-

brane for release into the extracellular space. Intraluminal vesi-

cles arise in multivesicular bodies through budding mediated

by the endosomal sorting complex required for transport com-

plexes.77 These vesicles are released as exosomes into the

extracellular environment upon fusion of multivesicular bodies

with the plasma membrane.33 Microvesicles, also referred to as

ectosomes, are larger EVs of 100 to 1000 nm diameter that are

released into the extracellular space by direct budding from the

plasma membrane. They also include microvesicles released

from specific cell types, such as from apoptotic cells or tumor

cells. In these circumstances they are typically referred to as

apoptotic bodies and large oncosomes, respectively. The cargo

sorting and outward plasma membrane budding resulting in

microvesicle release is mediated by small GTPases as well as

components of the endosomal sorting complex required for

transport machinery.31,139,140,203 Since there can be some over-

lap in the size of exosomes and microvesicles, classification is

primarily based on the mode of biogenesis.

Based on MISEV2018, microparticles fall under the defini-

tion of “EV,”191 rendering the 2 terms at least partially over-

lapping, and no clear definition of microparticles is available.

However, several articles have been published in veterinary

medicine on the role of microparticles, especially platelet-

derived microparticles, in coagulation and cardiovascular

diseases.94,96

After release by donor cells into the extracellular space, EVs

reach their target cells. Many EVs are taken up by the recipient

cells and degraded by their lysosomal system; in others, the EV

Table 1. Classification of EV Based on Their Size, Density, and Mode
of Biogenesis.a

EV type
Diameter

(nm)
Density
(g/mL)

Cellular
origin Origin

Exosomes 30–150b 1.13–1.19 Most cell
types

MVB

<100c 1.10–1.18c

Microvesicles 200–1000b 1.04–1.07c Most cell
types

PM-shed
vesicle

100–1000c

Apoptotic bodies 1000 to
>5000

1.16–1.28 All cell
types

PM-shed
vesicle

500–4000c

Large oncosomesd 1000–10 000d 1.10–1.15e Tumor
cellsd

PM-shed
vesicled

Abbreviations: MVB, multivesicular bodies; PM, plasma membrane.
aAdapted from van der Pol E, Böoing AN, Sturk A, et al. Classification,
functions, and clinical relevance of extracellular vesicles. Pharmacol Rev.
64(3):676–705.

bWhiteside et al.205

cSamanta et al.170

dCiardiello et al.33

eMinciacchi et al.127

Figure 1. Mechanisms of extracellular vesicle (EV) biogenesis, release,
and uptake. Different types of EVs are produced and released in dif-
ferent ways by donor cells: by formation of multivesicular bodies and
fusion to the membrane (exosome), or by direct blebbing of the
membrane (microvesicles, large oncosome, apoptotic bodies). Once
in the intercellular space, EVs can be uptaken by target cells by
receptor-mediated recognition, endocytosis, phagocytosis, or direct
fusion with the plasma membrane. MVB, multivesicular body; E, exo-
some; MV, microvesicle; LO, large oncosome; AB, apoptotic body.
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contents induce phenotypic changes in the recipient cell. EVs

can transmit information both at the recipient cell surface and

after internalization. Uptake of EVs requires that EVs bind to

specific receptors present on the surface of target cells.146

However, it is not known if binding of particular EV subtypes

to recipient cells is target-specific or nonspecific and stochas-

tic; it is likely that both mechanisms occur.118 The various

mechanisms by which EVs are internalized into the recipient

cell seem to be more dependent on the recipient cell type than

on the EVs themselves. EVs can directly fuse to the plasma

membrane of the recipient cells and then release their content

into the cytoplasm. Alternatively, EVs can be internalized by

phagocytosis or endocytosis. Endocytosis can be clathrin-

dependent or clathrin-independent (lipid raft-mediated). The

latter can require the presence of caveolins, which are proteins

involved in the creation of small cave-like invaginations in the

plasma membrane.61 Endocytosis can result in EV degradation

in the lysosome or release of the EV cargo into the cytoplasm of

the recipient cells by back-fusion with the endosomal mem-

brane.150 However, investigation of this final step in EV

uptake, namely, the delivery of EV contents into the recipient

cell via EV degradation or re-secretion, is crucial to understand

the functional consequences of EV-mediated transfer of bioac-

tive molecules.118

Physiological Roles of EVs

Research over the past decade has demonstrated that EVs are

not only generated by cells during disease but are also secreted

by healthy cells where they mediate intercellular communica-

tion in a number of physiological processes. Here follows a

brief overview of the physiological processes in which EVs

play an important role, ranging from embryonic development

to maintenance of tissue homeostasis (Fig. 2).

EVs in Conception and Early Development

The presence of EVs has been demonstrated in the seminal

fluid of multiple species including humans. The proteins con-

tained within these EV (eg, adhesion molecules, enzymes of

the polyol pathway) play a role in sperm maturation and ferti-

lization.62,68,192 Specifically, CD9-carrying EVs promote

sperm-egg fusion.129 After fertilization, EV shedding is uti-

lized to remove the sperm receptor from the plasma membrane

of the oocyte in order to prevent polyspermy.14 Interestingly,

embryonic stem cells (ESCs) residing in the inner cell mass of

the blastocyst also release EVs that they use to communicate

with their environment. ESCs release EVs that are transferred

to trophoblasts stimulating their migration and invasive prop-

erties.43 This suggests that the embryo itself contributes to the

highly coordinated process of embryo implantation through

EV-mediated communication, a finding that was confirmed

in in vivo experiments where injection of blastocysts with

ESC-derived EVs enhanced the implantation rate in mice.

EVs in Immune Regulation

EV-mediated communication is involved in both the adaptive

and innate immune responses. Antigen-presenting cells includ-

ing B lymphocytes generate EVs carrying peptide-MHC com-

plexes that activate T cell lines, primed CD4þ T cells, and

T lymphocytes in vivo.2,138,146,164,219 EVs derived from

Figure 2. Roles of extracellular vesicles (EVs) in physiological processes. A variety of cell types in the body communicate via EVs. EV-mediated
transfer of bioactive cargo influences processes in early development, the immune system, nervous system, and circulatory system.
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antigen-presenting cells also carry RNA cargo that influences

immune cell behavior. For example, EV-mediated transfer of

miRNAs between dendritic cells represses target mRNA

expression in the acceptor dendritic cells.132 T lymphocytes

also use EVs to transfer miRNAs to antigen-presenting cells

at the immune synapse and alter their gene expression pro-

files.128 Regulatory T cells secrete EVs containing miRNAs

that are taken up by T helper 1 cells and suppress their inflam-

matory responses.149 Tumor-derived EV-enclosed miRNAs

bind to Toll-like receptors on macrophages, resulting in activa-

tion of the macrophage immune response.52 Contrary to this,

EV-mediated miRNA transfer from mesenchymal stem cells to

macrophages suppresses Toll-like receptor activation.159 Over-

all, either through antigen presentation or by content transfer,

EVs have an important role in modulating immune responses

(reviewed in Robbins and Morelli167).

EVs in the Nervous System

Neurons and glia cells use EVs to mediate intercellular com-

munication. In vitro cultured neurons release EVs on stimula-

tion of glutamatergic synaptic activity and depolarization.56,100

Stimulated neuron-derived EVs were selectively taken up by

other neurons and not by glial cells, suggesting a mechanism of

interneuronal communication.30 The cargo of neuron-derived

EVs is functionally active and capable of inducing phenotypic

changes in recipient cells. For example, the uptake of EV-

enclosed miR-124a by astrocytes induced an upregulation in

their expression of the astroglial glutamate transporter

GLT1.136 EVs released by oligodendrocytes contain myelin

proteins and oxidative stress-protective proteins and are taken

up by neurons resulting in altered neuronal firing rates and gene

expression profiles, although underlying mechanisms remain to

be further defined.63,64,99 Furthermore, oligodendrocyte-

derived EVs regulate oligodendrocyte physiology by inhibiting

their differentiation and myelin formation.11 Schwann cells

release EVs that are taken up by axons and enhance their

regenerative capacity after sciatic nerve injury in vivo.111 It

has been suggested that EVs released by microglia regulate

neuronal excitability by inhibiting the synthesis of sphingolipid

ceramides and sphingosine.8 Sphingosine stimulates exocytosis

of vesicles into the synaptic space.42 In vitro cultured astro-

cytes have also been shown to release EVs.15,45 The function of

these astrocyte-shed EVs remains unclear although they are

suggested to play a regulatory role in the immunological

response to inflammatory brain lesions.45 Collectively, these

studies demonstrate that neurons and a variety of glial cells

release EVs that modulate neuronal excitability, repair

mechanisms, and offer protection against cellular stress.

EVs in the Circulation

Tissue factor is present on the membranes of vesicles in the

blood of healthy human subjects.67 This suggests a thrombo-

genic role for EVs because tissue factor activates the coagula-

tion cascade; however, the majority of circulating tissue factor

is still thought to be present in the noncoagulant form.215

Human wound blood, on the other hand, has been shown to

contain EVs exposing highly procoagulant tissue factor, further

supporting a role for EVs in hemostasis.16,144

EVs have stimulatory and inhibitory effects on the forma-

tion and expansion of new blood vessels. EVs released by

endothelial cells carry matrix metalloproteinases that enhance

matrix degradation and promote angiogenesis.190 Platelet-

derived EVs promote endothelial cell proliferation, survival,

migration, and vessel formation.23,95 In contrast, lymphocyte-

derived EVs suppress angiogenesis by disrupting the VEGF

signaling pathway and augmenting oxidative stress.137

These findings can be potentially applied to the clinical

setting. As an example, stem cell–derived EVs and their bioac-

tive cargo have tissue regeneration abilities that may open

novel therapeutic avenues for the repair and regeneration of

damaged tissues.114

EVs in Pathogenesis: Key Mediators of
Intercellular Crosstalk

The secretion of altered EVs likely contributes directly to the

pathogenesis of various neoplastic, infectious, degenerative,

and immune-mediated diseases. The analysis of EVs and their

biologically active cargo may help identify disease mechan-

isms and form a basis for the development of novel therapeutic

approaches.

Even if this part of the review will be focused on the role of

EVs in neoplastic diseases, there are several published works in

veterinary medicine investigating the role and potential appli-

cations of EVs in infectious and degenerative diseases. Viral

and bacterial pathogens change EV content and functions in

affected cells to promote their own replication, survival, and

pathologic effects. During viral infection, for example, such as

retroviral infection (Fig. 3), a fundamental contribution of EVs

has been discovered, strongly linking the fields of EV biology

and virology.72 Preliminary data on the potential role of EVs in

the pathogenesis and virus transmission of viral diseases of

animals have been published recently. These include analyses

of serum EVs from pigs infected with African swine fever

virus116 and porcine reproductive and respiratory syndrome

virus,131 milk EVs from cows infected by bovine leukemia

virus,210 and EVs from semen of equine stallions with long-

term persistent infection by equine arteritis virus.24 The small

number of studies that have investigated EVs in infectious

disease in domestic animals have offered a glimpse of their

importance to understand host-pathogen interactions. Further-

more, while research on the role of EVs in degenerative and

immune-mediated diseases is just beginning, the numerous

spontaneous animal models of these disorders can offer a good

research setting to further investigate EVs role and potential

applications.

Histological observations of diseased tissues such as the

distribution of altered cells, the expression patterns of specific

molecules, and how subpopulations of diseased cells are dis-

tributed and interconnected to each other can guide

456 Veterinary Pathology 58(3)



pathologists in generating new hypotheses on key pathogenetic

mechanisms of intercellular crosstalk mediated by EVs and their

cargo. Based on these observations and presumptions, in vitro

models can be developed to allow the identification of active

molecules contained in the EVs that are released by donor cells

and that activate specific cellular pathways when they are taken

up by the recipient cells. Subsequently, the functional role of the

EV cargo should be confirmed in vivo, through the use of animal

models or by analyzing tissue samples obtained from patients.

The latter is a key step, but to date still represents a major

challenge in EV research. This stepwise approach based on the

use of multiple methods and techniques represents an example of

how pathologists can contribute to the field.

The body of work performed on the role of EVs in cancer is

summarized in the following paragraphs and illustrated by

examples from the human and veterinary research fields.

EVs in the Pathogenesis of Neoplastic
Diseases

EVs play an active role in the pathogenesis of neoplasia. Their

role starts when normal cells exposed to a carcinogenic insult

change the quantity and cargo of the released EVs. The cargo of

these cells seems to primarily promote neoplastic transforma-

tion, the emergence of tumor-initiating cells, and cancer cell

progression. Cancer cells release a variety of EVs, which are

able to influence the behavior of recipient cells to promote can-

cer cell survival (Fig. 4). EVs participate in the horizontal trans-

fer of biological information among not only cancer cells but

also noncancerous cells both at the tumor niche and in distant

organs where they contribute to the preparation of a permissive

niche for metastasis. In addition to tumor-initiating cells and

cancer cells, EVs can be produced and released by nonneoplastic

cells residing in the organ where the primary tumor is located or

even in distant tissues (the potential sites of future metastasis).

These vesicles can either favor or impair tumor cell viability,

proliferation, and invasion, actively contributing to the patho-

genesis of cancer.90 EVs play a key role in modulating cancer

immunity and in the crosstalk between tumor and immune cells.

EVs represent a mechanism used by tumor cells to escape the

host immune system.10,71,193 Knowledge of the role of EVs in

cancer is mainly based on research done in vitro, or in induced

mouse models, and the in vivo behavior of EVs in spontaneous

cancer models remains to be elucidated due to the lack of reli-

able methods to visualize and detect EVs in diseased tissues. The

following sections focus on the role of EVs in cancer initiation,

growth, and progression.

EVs in Pre-Neoplastic Lesions and Carcinogenesis

EVs have an active role in the multistep carcinogenesis process

and actively contribute to cancer initiation and progression.

Figure 3. Roles of extracellular vesicles (EVs) during retroviral infection. EVs produced and released by infected cells can both facilitate and
suppress viral infection by different mechanisms. EVs can carry viral proteins, receptors, and RNAs. EVs released by inflammatory cells that have
been activated by viral infection may also play a key role in the pathogenesis of viral diseases.
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Several known cancer risk factors have been linked to the

release and uptake of EVs with specific cargo that can actively

participate to cancer initiation. However, the number of pub-

lished studies in this field is still limited. Cancer risk factors

such as environmental chemicals (tobacco from cigarette

smoking, arsenide),65,209 bacterial or viral infections,123,124,180

diet-related factors (obesity),110 hormonal factors (estrogen,

androgen),166,175 and ultraviolet (UV) radiation26 have been

linked to changes in EV release and contents, and could suggest

that EVs play a role in cancer initiation. EVs seem to contribute

to tumor development in 2 different ways: (1) by inhibiting the

release from normal cells of EVs to carry tumor-suppressive

mediators that disrupt cancer signaling pathways;90,98 and

(2) by carrying an oncogenic content favoring tumor develop-

ment and growth during exposure to risk factors such as

chronic inflammation and environmental carcinogens.98,108 It

has thus been demonstrated that EVs can both suppress and

promote cancer initiation, through the action of different EV-

associated proteins and miRNAs with opposing functions.

EVs in Tumor Growth

One of the first recognized effects of EVs in tumors is that they

induce or increase cell proliferation in recipient cells by the

transfer of RNAs or proteins that are oncogenic or inhibit tumor

suppressors. miRNAs have a role in modulating key pathways

that induce cell proliferation.187 As an example, miR-222,

which is overexpressed in melanoma cells and transferred to

other melanoma cells via EVs, induced the activation of the

PI3/AKT pathway in recipient cells.57 Osteosarcoma-derived

EVs can contain miRNAs with oncogenic functions, such as

miR-135, which is able to promote osteosarcoma cell prolifera-

tion, as well as invasion.156 Proteins can also be carried by EVs

and are able to activate the same pathways inducing cell pro-

liferation.152 As an example, in in vitro models of prostate

cancer, tumor cell-derived EVs can contain the full-length

androgen receptor protein, which can be transported to the

nucleus of androgen receptor-null cells and enhance the pro-

liferation of recipient cells in the absence of androgen.166

Tumor-derived EVs can also contribute to the inhibition of the

Figure 4. Main roles of cancer-derived extracellular vesicles (EVs) in tumor pathogenesis. Tumor-derived EVs alter the behavior of cancer cells,
thereby facilitating cancer progression. Tumor-derived EVs induce alterations in immune cells, endothelial cells, fibroblasts, and mesenchymal
stem cells in order to establish a tumor microenvironment that promotes tumor cell survival and dissemination. CAFs, cancer-associated
fibroblasts.
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apoptotic cell death by upregulating the expression of anti-

apoptotic proteins such as Bcl-xL,4 survivin, XIAP, and

cIAP1,2.93,195 Canine mammary tumor cell–derived EVs had

higher levels of miR18a, miR19a, and miR181a compared to

canine normal epithelial cell–derived EVs, and it is hypothe-

sized that the miRNAs in cancer-derived EVs might regulate

pathways that are important for mammary tumor maintenance

and progression, such as cell division, antiapoptotic pathways,

and hormone activity mediated by the estrogen receptor.59

EVs in Cancer Progression

Numerous studies have demonstrated the relevant role of EVs in

inducing a more malignant and aggressive phenotype in tumor

cells. This is largely due to the modifications that tumor cell–

derived EVs have on other tumor cells and the surrounding

nonneoplastic cells (such as mesenchymal, endothelial, and

immune cells) that form the neoplastic niche (Fig. 4). In addi-

tion, the surrounding nonneoplastic cells also produce EVs and

are, in turn, able to influence and modify the behavior of neo-

plastic and nonneoplastic cells. Most of these changes are pro-

tumoral; however, antineoplastic effects have also been

described.28 Furthermore, cancer stem cells produce EVs and

are strictly dependent on the intercellular communication with

their stem cell niche.13 This is evident from several studies indi-

cating that EVs derived from cancer stem cells are enriched with

specific miRNAs and can induce activation and proliferation of

several cell types, such as cancer-associated fibroblasts and

tumor-associated macrophages.174,176 Finally, cancer cells that

underwent senescence or apoptotic cell death (eg, in response to

cancer drug treatments) can also release EVs thereby influencing

the behavior of other neoplastic cells and neighboring nonneo-

plastic cells, favoring cancer progression.189

EVs secreted by tumor cells can be enriched with pro-

angiogenetic factors, stimulating endothelial cell motility and

vessel sprouting during angiogenesis to supply nutrients and

oxygen to tumor cells.34,51,69,70,216 Finally, cancer cells pro-

duce more EVs under hypoxic conditions and hypoxia-

induced EVs promote tumor angiogenesis, as well as invasion

and metastasis.178

EVs affect epithelial-to-mesenchymal transition. This is a

process by which epithelial tumor cells lose their differentia-

tion and acquire a mesenchymal-like phenotype that renders

them more invasive and promotes metastatic spread.20,48

Tumor cells undergoing epithelial-to-mesenchymal transition

can produce EVs that induce epithelial-to-mesenchymal transi-

tion in neighboring tumor cells, as has been observed in

prostate cancer52 and melanoma.207 Furthermore, EVs associ-

ated with epithelial-to-mesenchymal transition can promote

fibroblast activation50,74 and myofibroblast phenotype

differentiation,32,204 thereby contributing to the formation of

cancer-associated fibroblasts. The crosstalk between resident

fibroblasts and neoplastic cells has emerged as one of the key

components in the creation of a pro-invasive condition in the

tumor niche. EVs released by cancer-associated fibroblasts can

transport molecules that promote epithelial-to-mesenchymal

transition and induce phenotypic modifications in tumor cells,

for example, inducing a stroma-like phenotype in recipient

breast cancer cells (miR-21, -378e, and -143) or prostate tumor

cells (miR-409), or promote increased anchorage-independent

growth and expression of stem cell (Oct3/4, Nanog, Sox2)

and epithelial-to-mesenchymal transition (Snail and Zeb)

markers.49,89 In early cutaneous melanoma lesions (melanoma

in situ), melanoma cells produce specific melanoma-associated

vesicles, called melanosomes. These are normally involved in

the production and transfer of melanin pigment to neighboring

keratinocytes, but they are enriched with specific microRNAs,

such as miR-211, able to induce features of cancer-associated

fibroblasts in distant dermal fibroblasts before invasion of the

melanoma.50 Cancer-derived EVs are also enriched in molecules

(such as tetraspanins, adhesion molecules, and proteases) that

mediate the digestion of or the interaction with extracellular

matrix components,137 a step in cancer progression indispensa-

ble to the passage of tumor cells through the extracellular

matrix.21 In this context, EVs from various cell types and body

fluids contain matrix metalloproteinases.181

In recent years, a role for adipose cells and adipose tissue–

derived mesenchymal stem cells in the modulation of tumor

cell behavior has been recognized and shown to involve EV

release and uptake. Adipocyte-derived EVs can induce con-

trasting effects on tumor cells depending on the type of tumor,

either promoting proliferation, migration, and metastasis (as in

melanoma and breast cancer), or inhibiting proliferative and

promoting apoptosis (as in ovarian cancer). Notably, a potential

effect of obesity in stimulating premetastatic niche formation

in the liver has also been suggested. Furthermore, cancer cell-

derived EVs also have an effect on the surrounding adipocytes,

by inducing the conversion toward a cancer-associated adipo-

cyte phenotype that in turn affects tumor cell behavior. EVs are

thought to have a role in the crosstalk between tumor and

adipose tissue,184 also in the context of obesity, which is known

to be a risk factor for cancer progression.110

EVs in Metastasis

Once tumor cells reach the vessel lumen to become circulating

tumor cells and start their dissemination to distant organs, they

become vulnerable to immune surveillance and require

mechanisms of escape from immune-mediated elimination.130

EVs produced by both tumor cells and platelets197,220 within

the vessel lumen seem to contribute to the protection of tumor

cells, helping them to survive.

The ways in which EVs can contribute to the metastatic

spread of tumor cells are numerous and occur during different

phases of this multistep process.1 Therefore, research is neces-

sary to clarify these mechanisms and understand how they can

be therapeutically exploited. EVs participate in the creation of

a “favorable metastatic niche”, which is called a “premetastatic

niche” when induced by cancer-derived EVs that reach distant

sites through the circulation, or an “active metastatic niche”

when induced by EVs released by nonneoplastic cells in distant

organs.82,194 In the multistep process of metastatic spread,
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cancer-derived EVs first permeabilize vessels, promoting vas-

cular leakiness and allowing for EV diffusion, before being

taken up by parenchymal cells at the future metastatic site.82,157

Even though the majority of cancer-derived EVs distribute to

the bone marrow, there is evidence that specific cancer cell–

derived EVs disseminate to organs that mirror the donor

cancer-specific metastatic sites.208 These observations allow

us to speculate that cancer-derived EVs arrive in the future

metastatic site where they influence the resident cells to attract

cancer cells. Indeed, cancer-derived EVs might be involved in

controlling the organotropism of metastases. EVs show distinct

integrin expression patterns that are related to the specific site

of metastasis, suggesting that EV integrins could be used to

predict organ-specific metastasis.82

Regional lymph nodes represent the first site of metastasis

for many tumors, such as melanomas or carcinomas. In an early

stage of melanoma, tumor-derived EVs efficiently disseminate

via lymphatics, reaching regional tumor-draining lymph node,

where they are more abundant compared to other organs and

tissues.163 In the lymph node, during tumor progression or

anticancer treatment, tumor-EVs induce a protumoral environ-

ment, interacting and altering the functions of nodal tumor

suppressing cells (subcapsular sinus macrophages).119,163

The highly metastatic pancreatic ductal adenocarcinoma

cells release EVs into the blood. Once these EVs reach the

liver, they are taken up by resident histiocytic cells (Kupffer

cells), inducing the formation of the liver premetastatic niche.

Activation of Kupffer cells by EVs leads to a cascade of events

with involvement of inflammatory cells that precedes the estab-

lishment of metastases.36 Furthermore, hepatic niche-derived

(nontumor-derived) EVs can also have a role; for example, they

can affect breast cancer cells by inducing changes consistent

with a mesenchymal-to-epithelial transition,47 modulating

the expression of key molecules such as E-cadherin and

b-catenin.47,105 This is a process by which (epithelial) tumor

cells that underwent epithelial-to-mesenchymal transition at

least partially re-acquire their differentiated phenotype that

creates in distant sites a tumor similar to the primary cancer.112

Bone is also a frequent site for metastasis of specific carci-

noma types, such as breast and prostate cancers. Cancer cells

can communicate with bone cells via EVs to enable the bone to

permit cancer cell proliferation.109,162 Bone-tropic breast can-

cer cells secrete miR-218-enriched EVs. This specific miRNA

directly and indirectly downregulated type I collagen expres-

sion by osteoblasts, inhibiting osteoblast differentiation and

contributing to the adaption of the bone niche.109 Prostatic

cancer cell–derived EVs enhanced osteoblast viability and pro-

duced a significantly more supportive growth environment for

prostatic cancer cells when grown in co-culture with EV-

treated osteoblasts.162

Once tumor cells arrive at the metastatic site they can

change their phenotype through mesenchymal to epithelial

transition, proliferate,104 or undergo dormancy and later reac-

tivation. The potential role of EVs in the regulation of cancer

cell dormancy at the metastatic sites has recently been recog-

nized and has potential therapeutic applications. During the

process of metastasis, not all cancer cells that reach the distant

metastatic sites actually give rise to metastatic tumor growth.

Some of them find an unfavorable environment in which fac-

tors secreted by local cells regulate the entry and retention of

tumor cells into “cancer cell dormancy” and the forming of the

so-called “sleepy niche.”158 EVs released by nonneoplastic

cells in these sites participate in this process.17,25,151

Fields of Application

Understanding the mechanisms of action of EVs provides new

insights into pathogenesis and may lead to the development of

new therapies for cancer,182 degenerative diseases,78 and skin

diseases.120 These innovative therapies are based on exploiting

the cargo function of EVs to deliver drugs to target cells or

blocking EV biogenesis, release, or uptake (Fig. 5). There are

still limitations on developing EVs as a platform for drug deliv-

ery, mainly linked to the technology and lack of standardized

methods for EV production and quality control. A few studies

have been published on canine and swine models, mainly based

on the use of EVs in regenerative medicine,9,161,199 and other

reviews have been recently published.88,173,182 It is important to

use the right disease models to test these new-generation drugs

and this is an area where veterinary research can contribute.

Furthermore, many studies have aimed to unravel the

molecular profile of EVs and to map the EV content altera-

tions that occur within cells under the influence of disease,

with the aim of discovering new reliable biomarkers.218 EVs

could represent a rich and accessible source of biomarkers for

cancer,218 inflammatory disorders,35 and diseases of the car-

diovascular system,46 skin,120 kidney,53 liver,12 and nervous

system91,201,214 in humans.

Overview of EVs as Biomarkers

As EVs are released by diseased cells into the extracellular

space and to the circulation, they can be isolated from many

body fluids, and their molecular cargo can yield information

about the cells of origin.102 This is the driving factor behind

research into the use of EVs as biomarkers, predominantly in

humans but increasingly also in veterinary medicine. Liquid

biopsies are minimally or noninvasive compared to tissue biop-

sies. Liquid biopsies based on EVs are still in an early stage of

development177 and there are only a few EV-based tests cur-

rently approved by the Food and Drug Administration, mainly

for cancer patients.

EVs contain different cargo derived from their donor cells

including proteins, lipids, and the nucleic acids: DNA, messen-

ger RNA, small noncoding RNA, such as miRNA, and long

noncoding RNA.86,117,218 These are candidate biomarkers

because they reflect the state of the donor (diseased) cells at

the time of formation, and this EV cargo can mirror variations

in molecular expression over time. Several characteristics of

EVs make it potentially advantageous to measure biomarkers

in EVs rather than as free molecules in body fluids:
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1. Biomarkers contained within EVs are more stable as

they are shielded by the lipid bilayer from enzymatic

degradation by (ribo)nucleases, proteases, and lipases,

and from environmental and storage conditions, such as

freezing, thawing, and pH.218

2. Biomarkers may be enriched in these vesicles; that is,

present in a higher concentration and therefore more

readily detectable than in body fluids.

Thus, capturing of these small satellites of information from

the blood (or other fluids) may give us a glimpse of what is

going on in diseased tissues.

EVs as Cancer Biomarkers

In the field of cancer research, tumor-derived EVs and their

cargo may have utility in early cancer detection, diagnosis of

cancer, assessment of prognosis, predicting response to cancer

therapy, and monitoring during treatment. Tumor-derived EVs

are a potentially rich and accessible source of cancer biomar-

kers that can be obtained from the minimally or noninvasive

liquid biopsy,102 whereas solid tissue samples are a more inva-

sive and sometimes dangerous—particularly in the case of

tumors in the brain and central nervous system—source of

EVs.102,201,205 EVs produced by tumor cells in the central ner-

vous system can be detected in the circulation, since they are

able to cross the brain-blood barrier,135 and in cerebral-spinal

fluid where EVs from patients with glioblastoma contain more

miR-21 than those from healthy humans.179

EV-derived DNA is the basis of the first EV-based tests. Two

examples are ExoDx Prostate, aimed at detecting a combina-

tion of specific mutations in EVs isolated from urine samples

for the diagnosis of high-grade prostate carcinoma;121 and

ExoDx Lung, based on the detection of EGFR mutations in

circulating EVs.27 Indeed, EVs can be a source of cancer-

derived DNA, including mitochondrial DNA and large frag-

ments of dsDNA, which can be used to detect mutations of the

tumor cells that produced the EVs.194

EV-derived RNA including miRNA is a potential diagnostic

biomarker. miRNAs form a minority of noncoding RNAs pres-

ent in EVs, with vault RNA, Y-RNA, and specific tRNAs being

among the most abundant small noncoding RNAs.147 Never-

theless, EV-derived miRNA may be good tumor biomarker

candidates.60,148 Importantly, not all circulating miRNAs are

within or associated with EVs, since miRNAs can circulate

bound to proteins or may be released from circulating tumor

cells and blood cells. Thus, for analysis of EV-derived miR-

NAs, it is fundamental to isolate EVs first and then analyze

their miRNA cargo. Using this approach on plasma-derived EV

samples, miRNAs participating in tumor invasion and metas-

tasis such as miR-21, miR-10b, miR-19a, miR-105, miR-122,

and miR-223 have been identified as prognostic biomarkers for

Figure 5. Extracellular vesicle (EV)-based therapy. EVs can be exploited both as therapeutic targets, to inhibit their biogenesis, release, and
uptake, and as therapeutic agents, using them as vaccine or nanocarriers to transport therapeutic molecules. E, endothelial cells; L, lymphocytes;
DC, dendritic cells; SC, stem cells; CAF, cancer-associated fibroblasts; Tag, tumor antigen; D, drug.
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metastatic lung and breast cancer.107,221 As an early cancer

diagnostic tool, acute myeloid leukemia-derived EVs with a

set of specific miRNAs were detected in circulation prior to

the appearance of leukemic blast cells in the blood.81 Further-

more, a specific miR signature in circulating EVs established

the diagnosis of pancreatic ductal adenocarcinoma and differ-

entiated it from chronic pancreatitis, and was superior to EV

protein GPC1 (glypican-1) or plasma CA (carbohydrate anti-

gen) 19-9 levels, the only Food and Drug Administration–

approved biomarker for management of pancreatic ductal

adenocarcinoma.101

Messenger RNA (mRNA), long RNA, and circRNA are also

present within EVs.117,165 In particular, EV-associated long

RNA in the circulation reflected the tissue origins and the

relative fractions of different immune cell types. Furthermore,

their profiles could distinguish patients with cancer from

healthy individuals.106

Protein cargo of EVs derived from liquid biopsies is another

potential biomarkers, particularly for early cancer detection.41

Glypican-1, a surface protein in circulating EVs, was elevated

before pancreatic cancer was detectable by imaging techniques

and was highly expressed in patients at an early phase of the

disease compared to healthy humans.125 Furthermore, in early

phases of breast cancer, circulating EV-derived survivin92 and

fibronectin134 showed high levels of expression. Carcinoem-

bryonic antigen from circulating EVs has shown better predic-

tive value with higher sensitivity for metastatic colorectal

cancer compared to serum levels of the same protein.213

Furthermore, EV-derived molecules may be useful in selecting

patients for therapy. For example, HER2 levels in EVs derived

from the plasma of breast cancer patients correlated with the

levels in tumor tissue biopsies.55

In dogs, a few articles show the potential utility of EVs as

biomarkers. Information on the selection of reference genes for

miRNAs isolated from circulating EVs is available.142 Differ-

ent techniques to isolation and detection EVs in blood samples

have been described.3 Other studies compared the concentra-

tion of blood EVs in healthy dogs to those in dogs with differ-

ent types of tumors,221 mast cell tumor,183 or osteosarcoma,22

but these studies had contrasting results. The applicability of

EVs as cancer biomarkers in dogs is an almost completely

unexplored field of research with great potential.

EVs as Biomarkers of Other Diseases

EV-derived cargo has been investigated as a biomarker for

other types of diseases, such as human,46,143,168 canine,212 and

feline38 cardiovascular diseases, and metabolic disorders of

humans26,29,145 and cows. Indeed, most work in veterinary

medicine on EVs as biomarkers has been in dairy cattle. In

particular, different methods have been applied and compared

for detection of circulating EVs97,217 to monitor the metabolic

state, pregnancy,115,160 or uterine infections.6,7 Changes occur

in EVs as postpartum dairy cows adapt to lactation,5,39,40 sug-

gesting that circulating EVs might be used as biomarkers of

metabolic disease risk.5 The potential utility of EVs in the

diagnosis of bovine tuberculosis was demonstrated using an

in vitro model in which the EV-derived lipoprotein LpqH was

used to distinguish between paratuberculosis infection or vac-

cination against tuberculosis infection.153 In horses, circulating

EVs were explored as diagnostic markers for equine regenera-

tive anemia169 or laminitis in ponies,58 based on their specific

protein cargo or antigens that reflected their cell of origin,

respectively. EVs were isolated from synovial fluid, but no

differences were found in their concentration among horses

of different ages.19

Easily accessible sources of EVs have been used for diagnos-

tic purposes, including urine-derived EVs for human urological

cancer,44,202 and potentially for other nonurological malignan-

cies.54 In dogs and cats, urinary EV-derived specific miRNAs

isolated from fresh urine samples reflected changes in renal

function, as they were differentially expressed in both cats and

dogs with high levels of serum urea nitrogen and creatinine, as

well as in dogs with higher histological “kidney damage score,”

compared with healthy control animals with normal renal func-

tion. These data suggested urine EVs and their cargo as potential

biomarkers for the diagnosis of kidney disorders in animals.84,85

Furthermore, salivary EVs are potential biomarkers of human

oro-pharyngeal cancers,141 and perhaps also for systemic dis-

eases76 such as diabetes during early pregnancy.133 Human

breast milk also represents a biofluid from which EVs can be

detected and analysed.75,222 Studies in dairy cows compared

different methods for EV isolation from milk.172,186,196,211 Milk

EVs from cows that were uninfected or infected with Staphylo-

coccus aureus had differences in specific miRNAs (bta-miR-

142-5p and -223) that are potential biomarkers for the early

detection of bacterial infection of the mammary gland.186

Current Limits in EVs Application as Biomarkers

It is straightforward to isolate EVs from blood and other body

fluids, but there are still limitations to the routine application of

EV-based testing in the clinic,218 including a lack of standar-

dization of methods for isolation, detection, and analysis of

EVs.191 Currently, EVs are isolated based on their physiochem-

ical characteristics, as briefly explained in the following sec-

tion. However, for use as disease biomarkers, it may be more

sensitive to isolate and identify cell type–specific and cell sta-

tus–specific EVs from circulation by measuring panels of cell-

surface differentiation antigens shared by EVs and their donor

cells. However, the small size and high heterogeneity of EVs

make this a difficult undertaking. New isolation methods, such

as the use of DNA-assisted immunoassays, have been investi-

gated to detect the scarce EV subpopulations that have the same

surface markers as diseased or neoplastic cells.103,206

Methods for Isolating and Detecting EVs

Isolating EVs

Several methods have been developed for the isolation of EVs

from biological fluids or conditioned cell culture medium,

462 Veterinary Pathology 58(3)



although the efficacy and the purity of EV preparations varies.

Each of these methods uses the biophysical and biochemical

characteristics of EVs, such as mass density, size, and shape, to

separate them from other particles. One routinely applied tech-

nique is differential centrifugation, which applies stepwise

increases in centrifugal force to pellet particles based on their

density and size (Fig. 6). This separation of EVs into apoptotic

bodies (pellet at 2000� g), large EVs (pellet at 5000-10 000�
g), and small EVs (pellet at �100 000 � g). The main limita-

tion of differential centrifugation is that the resulting EV pellets

contain a significant amount of contaminants such as proteins.

Furthermore, this method of EV isolation is time-consuming,

hampering its application in the clinic.

Other, less time-consuming EV isolation methods are also

employed in EV research. These include size exclusion chro-

matography, ultrafiltration, and precipitation (Fig. 6). These

have reduced assay time compared with differential centrifuga-

tion, but still the EV preparations may contain significant

amounts of contaminants affecting the quality of the samples.

Size exclusion chromatography uses a column containing an

exclusion matrix to separate particles based on size.37 Conse-

quently, particles that are larger than the pore size of the exclu-

sion matrix, such as protein aggregates, will co-isolate with

EVs. In ultrafiltration, EVs are separated from soluble compo-

nents by passing the sample through a filter.37 EVs and other

particles larger than the pores in the filter are retained on the

filter, while smaller components pass through. Larger particles,

such as protein aggregates, co-isolate with EVs and are the

major contaminants in EV samples prepared by ultrafiltration.

Precipitation makes use of differential solubility of compo-

nents in polyethylene glycol. This method has the highest level

of contaminants, such as proteins including albumin, apolipo-

protein E, and other lipoproteins, and Tamm Horsfall protein

(from urine). Moreover, residual polymer structures in the iso-

lated EV preparations may hamper structural and functional

analysis. Based on the authors’ experience, differential centri-

fugation isolates slightly more pure EV populations, even if the

separation is mainly based on size (and partly on density).

Therefore, EV preparations sedimented by differential centri-

fugation are also contaminated with larger protein complexes.

When used for fluids rich in lipoprotein particles (eg, plasma),

an advantage over precipitation is that with differential centri-

fugation, many (but not all) of the lighter and smaller lipopro-

tein particles (eg, very low density lipoprotein, chylomicrons,

high-density lipoproteins) are discharged.

A more robust procedure for the isolation of EVs is density

gradient centrifugation (Fig. 6), which is often performed to

further purify EV preparations after other initial enrichment

procedures (eg, differential centrifugation or size exclusion

chromatography). In density gradient centrifugation, EVs are

loaded in sucrose or iodixanol density gradients and centri-

fuged until they reach their equilibrium densities. Density gra-

dient centrifugation establishes a separation based on size and

mass density or mass density only, depending on whether a top-

down gradient or bottom-up gradient is used.37 The major

advantage of density gradient centrifugation is that it separates

EV from proteins and therefore results in a purer EV prepara-

tion compared with the other methods. However, contaminants

such as high-density lipoproteins can still be included in the

sample if they have similar buoyant densities as EVs. Density

gradient centrifugation gives low EV recovery compared to the

other methods and is time-consuming, which prohibits its use

in a clinical setting.

Immunoaffinity isolation techniques can be used to isolate

specific subpopulations of EVs (Fig. 6). These assays use sur-

faces coated with antibodies that bind to ligands, often proteins,

on the EV surface. Specific subpopulations of EVs that have

surface expression of the target antigen can be isolated.

Immunoaffinity-based assays can be readily made in the form

of a chip or plate and are therefore applicable in a clinical

setting.

The EV isolation method of choice depends on the type of

body fluid that is analyzed, the research question, and the

downstream analyses required to answer the research question.

For EV-associated biomarkers of disease, contaminants inter-

fere with accurate interpretation of the results. To prove that

disease biomarkers are associated with EVs, it is crucial that

EV preparations are as pure as possible. However, methods

giving highly pure EV preparations often have lower EV

yields; effectively, EV-based biomarker research constantly

faces a trade-off between EV purity, clinical applicability, and

biomarker yield. A great challenge in this field is the variability

of protocols used in different clinical studies to isolate or enrich

for EVs, which probably give rise to a much variability in the

data.

Analyzing EVs and Their Biomolecular Cargoes

To date, there is no gold standard technique for the quantifica-

tion of EVs, since no single method can analyze the full spec-

trum of EV properties in biological fluids or clinical samples.

The majority of EV-related studies used several complemen-

tary approaches to analyze EVs.79,188 In general, these methods

are based on physical or biochemical analyses to identify and

quantify EVs in a sample. Additionally, EV biomolecular car-

goes are investigated, for example, using proteomics, geno-

mics, and lipidomics methods.113 The main features of the

most used methods for the analysis of EVs are described below

and detailed information is provided by MISEV2018.191

Analysis Based on EV Physical Properties. Analyses of physical

properties include electron microscopy and nanoparticle track-

ing analysis. These methods determine EV diameter directly

via high-resolution imaging, or indirectly using indirect elec-

trical readouts. High-resolution flow cytometry is a further

method allowing the analysis of EVs based on physical prop-

erties that requires advanced equipment and is therefore not

widely applied.

Electron microscopy allows visualization of the morphology

and size of EVs. Electron microscopy has recently been applied

to characterize EVs of canine and feline mammary cancer cells.

The same study also used transmission immuno-electron
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microscopy using immunogold-labeled antibodies to common

EVs markers (CD63 and Alix).171 A limitation of this technique

is the limited number of EVs that can be analyzed. For this

reason, it is impossible to use electron microscopy to analyze

a representative population of EVs that vary in size and compo-

sition, as is present in biological and clinical samples. Related

techniques that can be used to analyze EVs are scanning electron

microscopy, cryo-electron microscopy, and scanning-probe

microscopy including atomic force microscopy.191

Flow cytometry is commonly used for the analysis of cells

and has been adapted for the analysis of EVs. High-resolution

flow cytometry, which can detect particles smaller than *500

nm, is one of the best techniques for EV quantification and

enumeration. It uses light scattering and fluorescence para-

meters, which may include labeling of specific EV compo-

nents.145,200 However, there is still the risk of swarm effect

when the sample is too concentrated (multiple EVs are simul-

taneously illuminated by the laser and counted as a single

Figure 6. Most frequently used methods for the isolation of extracellular vesicles (EVs). The isolation of EVs can be based on size, buoyant
density, or by detecting an antigen. Differential ultracentrifugation uses centrifugal force to separate EVs based on size, as larger EVs collect
earlier and at a lower centrifugation speed compared to small EVs. In size-exclusion chromatography, a column with a porous matrix is used to
separate EVs by size. Filtration concentrates EVs in a sample by passing them through a filter. In precipitation, a reagent is added to a sample
concentrate EVs in a pellet. In density gradient centrifugation, EVs are separated into specific layers of a density gradient, as they settle in the
layer with their equilibrium density. The immunoaffinity isolation method uses antibodies to capture EVs based on their antigenicity.
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particle), so it is crucial that samples are diluted until single EV

measurements are reached.185

Nanoparticle-tracking analysis estimates the diffusion coef-

ficient and size of individually observed EVs by analyzing their

motion trajectories. One major limitation of this technique is

that size determination could be less accurate, particularly for

populations of smaller particles.154 This might be even more

complicated for analyzing EV concentrations in complex bio-

fluids, because protein aggregates and lipoproteins may be

other sources of scattering.122 Nonetheless, despite these lim-

itations, nanoparticle-tracking analysis represents one of the

most used methods for fast assessment of both size distribution

and concentration of EVs.

Dynamic light scattering is another technique used to ana-

lyze EVs. It analyzes the scattering of a laser beam, but with

limitations on the smallest size of detectable particles (ranging

from 1 nm to 6 mm) and reduced accuracy in suspensions of

particles varying in size.191

Analysis Based on EV Biochemical Properties. Biochemical analy-

ses can be performed on EV samples to confirm the presence of

EVs or to select a specific subclass of EVs. These assays can

only be used for measuring highly purified EV samples, since

measurements can be compromised by protein contamination

of the sample. The most commonly used biochemical methods

can be divided into conventional protein analysis (immunoblot-

ting assays) and assays that capture specific EVs (immunosor-

bent EV assays).

Immunoblotting of specific proteins is used to confirm the

presence of EVs in a sample, or determine their cell of origin or

protein composition. Purified EVs are lysed to solubilize EV

proteins, which are directly spotted on a membrane (in a dot

blot assay) or separated using SDS-PAGE (in a Western blot

assay) and the protein of interest is detected with labelled anti-

bodies. Based on the MISEV2018 guidelines, the presence of

EVs should be demonstrated by detecting at least one trans-

membrane protein associated with the plasma membrane (such

as CD9, CD63, CD81) and one cytosolic protein in EVs (eg,

TSG101, ALIX).191 Immunoblotting is most frequently used

for this purpose. Immunoblotting can also be used for the detec-

tion of EV-associated proteins, such as for use as biomarkers of

disease. However, it is important to note that immunoblotting is

a semiquantitative method and that as for other bulk assays it

does not provide any information about EV heterogeneity.

Immunosorbent EV assay is a modification of the classical

enzyme-linked immunosorbent protein assay in which antibo-

dies with affinity for EV membrane proteins are used to capture

and detect specific EVs. A variant of this method uses magnetic

beads for EV capture. This has a potentially increased capture

efficiency because of the mobile capture surface. These assays

have proved to be valuable when used with other techniques

such as flow cytometry for quantification of EV surface pro-

teins in complex samples such as urine or blood without prior

EV isolation and purification. However, it must be realized that

so far, no protein targets have been identified that cover the full

spectrum of EVs or are present on every vesicle within an EV

population. Thus, these approaches only quantify the EV-

associated target proteins and the selection and use of specific

antibodies implies that only a specific subset of EVs carrying

the targeted proteins will be characterized. The future clinical

application of this method relies on ongoing research to iden-

tify disease-specific panels of antigens on the EV surface that

are shared by diseased donor cells and their released EVs. This

would allow the specific detection and quantification of EVs

produced and released by the diseased cells.79

The major challenges in the analysis of EVs is their hetero-

geneity in size and composition, and the difficulty in distin-

guishing EVs from similarly sized structures such as

lipoproteins, protein aggregates, and viruses.113 To date, no

single technology can perform the full range of EV analyses

making a combined approach the only option for comprehen-

sive EV analysis at this time. Furthermore, there are still sev-

eral limitations before use of EVs will be possible; these are

linked to the need for standardization of analytical procedures

in order to generate comparable results. This renders the field

of EV research an exciting and challenging new domain for

clinicians and scientists alike.

Contribution of Pathologists to Studying EVs
Secreted by Diseased Tissues

Limitations of Current Methods for Studying EVs in
Diseased Tissues

To date, only a few articles have been published on how to

isolate EVs directly from solid tissues.83,198 In these studies,

EV were isolated from brain tissue by creating a tissue cell

suspension that was subjected to centrifugation and ultracen-

trifugation steps followed by sucrose or iodixanol density-

gradient flotation. Gentle manipulation of the tissue to avoid

cell damage is essential to obtain reliable results, as is

prompt freezing at �80 �C for storage. Postmortem delay,

longer storage time, and freeze-thaw cycles will negatively

impact the tissue quality and result in contamination of the

fractions with cellular debris and vesicles that were not

actively released by cells. This method seems to be promising

and applicable to other tissue types. Indeed, EVs were isolated

from lymph node and skin melanoma metastases using a sim-

ilar centrifugation-based protocol,87 which was combined

with electron microscopic analysis of tumor tissue to visualize

EVs in the interstitial space of melanoma metastases. Visualiza-

tion of EVs within intact diseased tissue would be extremely

interesting, but reliable methodology is currently lacking to per-

form such experiments.

Several authors have tried to observe and quantify the

immunohistochemical expression of EV markers in human

tumor tissue samples. However, some known EV markers, such

as CD63, are also expressed by cells. Thus, although increased

CD63 expression in gastric cancer cells is suggested as a prog-

nostic factor,126 it cannot be directly linked to the functions of

EVs released by gastric cancer cells. There are several identi-

fied EV markers (summarized in a detailed table in

Bongiovanni et al 465



MISEV2018)191 that are generic or specific for the tissue of

origin, and they are usually used when EVs have already been

isolated from body fluids or culture media, to confirm the pres-

ence of EVs or to isolate and analyze a specific subgroup of EVs.

However, the fact that these markers are shared by EVs and their

donor cells make them inappropriate to identify EVs directly in

tissue, for example, by the use of immunohistochemistry.

It would be a major advance to be able to isolate and quan-

tify EVs and analyze their cargo in the context of their tissue

location. This would identify exactly where they are concen-

trated in the tissue, and clarify their physical relationship to the

donor and recipient cells within the diseased tissue. For exam-

ple, a tumor mass is considered to contain neoplastic cells that

are particularly active in communicating with their environ-

ment: neoplastic cells that are at the invasive front, or close

to vessels, or aggregated in a small group in the so-called

“collective cancer invasion.” Thus, these cells are most likely

to actively produce EVs in order to communicate with neigh-

boring mesenchymal, endothelial, and immune cells, to thereby

facilitate their own migration. One possible approach would be

to isolate EVs from solid tissue83,198 with the use of EV mar-

kers and tissue microdissection techniques, in order to coloca-

lize the EV cargo produced by the tumor cells with their

specific distribution in the tissue, to create a topographic EV

characterization of tumor tissue.

Roles of Pathologists in Studying the Role of EVs in
Pathogenesis and Disease Progression

During in vitro functional studies on the role of EVs in diseases

and cell-to-cell interactions, molecules such as miRNA and

proteins are identified within EVs isolated from the condi-

tioned medium of donor cell lines. Several of these molecules

have been shown to have an effect on recipient cells when these

cells are cultured with EVs. However, little is known about the

functional importance of EVs in vivo or more importantly in

diseased tissues. Histopathological analysis of the diseased tis-

sues is therefore essential to understand the pattern of expres-

sion of the identified molecules, known to be produced by some

specific cell types. For example, specific neoplastic cell sub-

populations exist within a tumor and these might produce EVs

with different cargoes. These, in turn, may be able to differen-

tially change the phenotype and influence the behavior of other

tumor cells or cells in the tumor microenvironment. The con-

tribution of all these different EV cargoes are likely to be to

tumor progression, invasion, and metastatic spread. Patholo-

gists may be able to help EV scientists to understand which

EV cargoes are produced by which subpopulation of tumor

cells: apoptotic tumor cells,155 senescent tumor cells,189 cancer

stem cells,34,70 and drug-resistant tumor cells18 are just some

examples of these neoplastic subpopulations.

Identification of the recipient cells is also crucial to under-

stand the involvement of EVs in pathogenesis and disease pro-

gression, but still represents a very challenging issue in the

field. First, there must be clear evidence that a change in a

cell’s behavior is a direct result of the binding or uptake of

EVs. However, it is not easy to accurately identify cells that

have been targeted by an EV based on currently available

methods. Lipid dyes, for example, are used to stain EVs for

targeting experiments, but these dyes are not EV-specific and

can become separated from the EVs, be internalized by cells, or

stay in tissues even after EVs are degraded or internalized by

the cells, leading to inaccurate interpretation of results.66 It is

also challenging to exactly pinpoint which of the many mole-

cules associated to EVs are causing an effect on target cells.

New methods are needed to prove that EV-associated mole-

cules do induce changes in a recipient cell.

Roles of Pathologists in Studying Biomarkers in Liquid
Biopsies

There are numerous tissue markers but far fewer circulating

markers that are useful for diagnosis, prognosis, or predicting

therapeutic efficacy. Pathologists can use their knowledge of

tissue biomarkers to suggest potential EV-related biomarkers

for further investigation. Since the content of EVs tends to

mirror that of their donor cells, EVs might express disease-

specific markers as well as differentiation markers of the cell

of origin; this knowledge could be applied to techniques for

isolation and identification of EVs. Furthermore, since EVs can

be purified, their numbers and contents can be enriched mani-

fold. Consequently, markers that were previously too diluted to

be measured in biological fluids could be investigated.46

The contribution of pathologists to EV research is essential

for the identification of novel, specific tissue and disease mar-

kers to be detected in EVs. They can also play a role in com-

paring the presence of the relevant markers in EVs from body

fluids with expression and distribution of these markers in the

diseased tissue, with prognostic histological features of a dis-

ease, histological grading systems, and with clinical data and

follow-up information.

Conclusion

This article reviews recent advances in the field of EV research

in both the human and veterinary medical fields. What emerges

is the important role of EVs and their cargo in the progression

of diseases, and the enormous potential for using their biomo-

lecular cargo as disease biomarkers or therapeutic tools. While

small steps are being made toward the application of EV sci-

ence to veterinary clinical medicine, for example, as biomar-

kers in canine, bovine, and equine medicine, more work is

required to uncover their potential. Preliminary data suggest

that circulating EVs could be of help in the diagnosis of cancers

and infectious diseases in these species. Also, the analysis of

EVs from alternative sources in animals, such as urine, milk,

synovial fluid, shows potential and should be further

investigated.

Unraveling the role of EVs in the pathogenesis of diseases of

domestic animals will open new therapeutic possibilities and

form the basis for innovative EV-based approaches that could

subsequently be translated to human medicine. Preliminary
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data on the use of EVs as a form of tumor “vaccine” as well as

in regenerative medicine are very promising.

EV research is a relatively new field, and EVs show great

clinical potential for use in diagnosis and therapy. With their

expertise in tissue biomarkers and the analysis of diseased

tissues, there is a clear role for the pathologist in EV research

as it characterizes the functions and clinical applications of

these membrane-bound messengers.
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63. Fröhlich D, Kuo WP, Frühbeis C, et al. Multifaceted effects of oligodendroglial

exosomes on neurons: impact on neuronal firing rate, signal transduction and

gene regulation. Philos Trans R Soc B Biol Sci. 2014;369(1652):20130510.
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