146 research outputs found

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients

    Introduction: Rethinking the Impact of the Inter-American Human Rights System

    Get PDF
    This chapter introduces the central themes of the book and argues that the Inter-American Human Rights System (IAHRS) is activated by political actors and institutions in ways that transcend traditional compliance perspectives and that have the potential to meaningfully alter politics and provoke positive domestic human rights change. The chapter identifies key gaps in existing human rights scholarship, particularly in relation to the IAHRS, and outlines three core perspectives on the System’s impact on human rights. It offers a synthesis of the key findings of the volume, and provides reflections on the future prospects of the System by locating it in its broader global context

    Implementing a new mathematics curriculum in England: district Research Lesson Study as a driver for student learning, teacher learning and professional dialogue.

    Get PDF
    Against a backdrop of a transformation in teacher professional development and learning and state school organisation in England this century, this chapter describes a project which harnessed six cycles of Research Lesson Study at school and district level over two years to tailor the implementation of a new statutory curriculum in England to address the professional development needs of teachers and classroom learning needs of London students. It also reports the findings of research carried out during the project into how these teachers learned and developed this new curricular expertise and practice- knowledge through lesson study dialogues that supported student learning. It concludes by proposing future directions for teacher professional learning research and practice

    Acquired Resistance to KRAS (G12C) Inhibition in Cancer

    Get PDF
    BACKGROUND: Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRAS(G12C)). The mechanisms of acquired resistance to these therapies are currently unknown. METHODS: Among patients with KRAS(G12C) -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRAS(G12C) inhibitors. RESULTS: A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired KRAS alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the KRAS(G12C) allele. Acquired bypass mechanisms of resistance included MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN. In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of KRAS mutations that confer resistance to KRAS(G12C) inhibitors. CONCLUSIONS: Diverse genomic and histologic mechanisms impart resistance to covalent KRAS(G12C) inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.)

    Evaluation of lymph node numbers for adequate staging of Stage II and III colon cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although evaluation of at least 12 lymph nodes (LNs) is recommended as the minimum number of nodes required for accurate staging of colon cancer patients, there is disagreement on what constitutes an adequate identification of such LNs.</p> <p>Methods</p> <p>To evaluate the minimum number of LNs for adequate staging of Stage II and III colon cancer, 490 patients were categorized into groups based on 1-6, 7-11, 12-19, and ≥ 20 LNs collected.</p> <p>Results</p> <p>For patients with Stage II or III disease, examination of 12 LNs was not significantly associated with recurrence or mortality. For Stage II (HR = 0.33; 95% CI, 0.12-0.91), but not for Stage III patients (HR = 1.59; 95% CI, 0.54-4.64), examination of ≥20 LNs was associated with a reduced risk of recurrence within 2 years. However, examination of ≥20 LNs had a 55% (Stage II, HR = 0.45; 95% CI, 0.23-0.87) and a 31% (Stage III, HR = 0.69; 95% CI, 0.38-1.26) decreased risk of mortality, respectively. For each six additional LNs examined from Stage III patients, there was a 19% increased probability of finding a positive LN (parameter estimate = 0.18510, p < 0.0001). For Stage II and III colon cancers, there was improved survival and a decreased risk of recurrence with an increased number of LNs examined, regardless of the cutoff-points. Examination of ≥7 or ≥12 LNs had similar outcomes, but there were significant outcome benefits at the ≥20 cutoff-point only for Stage II patients. For Stage III patients, examination of 6 additional LNs detected one additional positive LN.</p> <p>Conclusions</p> <p>Thus, the 12 LN cut-off point cannot be supported as requisite in determining adequate staging of colon cancer based on current data. However, a minimum of 6 LNs should be examined for adequate staging of Stage II and III colon cancer patients.</p

    Contribution of Common Genetic Variants to Risk of Early-Onset Ischemic Stroke

    Get PDF
    Background and Objectives Current genome-wide association studies of ischemic stroke have focused primarily on late-onset disease. As a complement to these studies, we sought to identify the contribution of common genetic variants to risk of early-onset ischemic stroke. Methods We performed a meta-analysis of genome-wide association studies of early-onset stroke (EOS), ages 18-59 years, using individual-level data or summary statistics in 16,730 cases and 599,237 nonstroke controls obtained across 48 different studies. We further compared effect sizes at associated loci between EOS and late-onset stroke (LOS) and compared polygenic risk scores (PRS) for venous thromboembolism (VTE) between EOS and LOS. Results We observed genome-wide significant associations of EOS with 2 variants in ABO, a known stroke locus. These variants tag blood subgroups O1 and A1, and the effect sizes of both variants were significantly larger in EOS compared with LOS. The odds ratio (OR) for rs529565, tagging O1, was 0.88 (95% confidence interval [CI]: 0.85-0.91) in EOS vs 0.96 (95% CI: 0.92-1.00) in LOS, and the OR for rs635634, tagging A1, was 1.16 (1.11-1.21) for EOS vs 1.05 (0.99-1.11) in LOS; p-values for interaction = 0.001 and 0.005, respectively. Using PRSs, we observed that greater genetic risk for VTE, another prothrombotic condition, was more strongly associated with EOS compared with LOS (p = 0.008). Discussion The ABO locus, genetically predicted blood group A, and higher genetic propensity for venous thrombosis are more strongly associated with EOS than with LOS, supporting a stronger role of prothrombotic factors in EOS.Peer reviewe

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery

    Get PDF
    To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research
    corecore