54 research outputs found

    Education 4.0 to promote self-managed learning on the students of Baccalaureate from Juan Antonio Vergara Alcívar high school

    Get PDF
    El proceso educativo actual se ve inmerso en un conjunto de metodologías activas que fomentan la autonomía en el aprendizaje del estudiantado. Las tecnologías emergentes toman mayor vigencia dentro de la educación, favoreciendo el desarrollo de nuevas formas de enseñanza. Sin embargo, es conocido que a muchos docentes se les dificulta el uso de la tecnología y todo lo que esta implica, limitando a los alumnos para que sean gestores de su propia formación. Es por esta razón que se desarrolla este estudio científico con el propósito de analizar la aplicación de la educación 4.0 para fomentar el aprendizaje autogestionado en los estudiantes, por lo que se utilizó una investigación documental, con enfoque mixto. Se aplicaron los métodos de análisis-síntesis y deductivo. Se desarrolló un instrumento de recolección de datos, con un cuestionario de preguntas con respuestas de opción múltiple, el mismo que se aplicó a través de Google Forms. La población estuvo conformada por 50 docentes de nivel bachillerato, la muestra fue escogida a través de un muestreo no probabilístico por conveniencia estuvo compuesta por 38 maestros. La información recogida se sometió al análisis e interpretación de los investigadores llegando a la conclusión que algunos docentes no implementan la educación 4.0 porque les hace falta desarrollar competencias para el uso de nuevas tecnologías que dinamicen el proceso educativo y les permita a los alumnos autoprepararse en un entorno colaborativo y digital.The educational process is immersed in a set of active methodologies that promote autonomy in student learning. Emerging technologies are becoming more prevalent within education, thus favoring the development of new forms of teaching. However, it is known that many teachers find it difficult to use technology and everything it implies, thus limiting students from being managers of their own training. This is how this scientific study is developed with the purpose of analyzing the application of education 4.0 to promote self-managed learning in students. Documentary research was used, with a mixed approach. Analysis-synthesis and deductive methods were applied. A data collection instrument was developed, with a questionnaire of questions with multiple choice answers, which was applied through Google Forms. The population was made up of 50 high school teachers, the sample was chosen through non-probabilistic convenience sampling and was made up of 38 teachers. The information collected was subjected to analysis and interpretation by the researchers, arriving at the conclusion that some teachers do not implement education 4.0 because they find it difficult to develop skills for the use of new technologies that streamline the educational process and allow students to self-prepare in a collaborative and digital environment

    The role of plant secondary metabolites in shaping regional and local plant community assembly

    Get PDF
    The outstanding diversity of Amazonian forests is predicted to be the result of several processes. While tree lineages have dispersed repeatedly across the Amazon, interactions between plants and insects may be the principal mechanism structuring the communities at local scales. Using metabolomic and phylogenetic approaches, we investigated the patterns of historical assembly of plant communities across the Amazon based on the Neotropical genus of trees Inga (Leguminosae) at four, widely separated sites. Our results show a low degree of phylogenetic structure and a mixing of chemotypes across the whole Amazon basin, suggesting that although biogeography may play a role, the metacommunity for any local community in the Amazon is the entire basin. Yet, local communities are assembled by ecological processes, with the suite of Inga at a given site more divergent in chemical defences than expected by chance Synthesis. To our knowledge, this is the first study to present metabolomic data for nearly 100 species in a diverse Neotropical plant clade across the whole Amazonia. Our results demonstrate a role for plant–herbivore interactions in shaping the clade's community assembly at a local scale, and suggest that the high alpha diversity in Amazonian tree communities must be due in part to the interactions of diverse tree lineages with their natural enemies providing a high number of niche dimension

    Chemocoding as an identification tool where morphological- and DNA-based methods fall short:Inga as a case study

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordThe need for species identification and taxonomic discovery has led to the development of innovative technologies for large‐scale plant identification. DNA barcoding has been useful, but fails to distinguish among many species in species‐rich plant genera, particularly in tropical regions. Here, we show that chemical fingerprinting, or ‘chemocoding’, has great potential for plant identification in challenging tropical biomes. Using untargeted metabolomics in combination with multivariate analysis, we constructed species‐level fingerprints, which we define as chemocoding. We evaluated the utility of chemocoding with species that were defined morphologically and subject to next‐generation DNA sequencing in the diverse and recently radiated neotropical genus Inga (Leguminosae), both at single study sites and across broad geographic scales. Our results show that chemocoding is a robust method for distinguishing morphologically similar species at a single site and for identifying widespread species across continental‐scale ranges. Given that species are the fundamental unit of analysis for conservation and biodiversity research, the development of accurate identification methods is essential. We suggest that chemocoding will be a valuable additional source of data for a quick identification of plants, especially for groups where other methods fall short

    Macroevolutionary patterns in overexpression of tyrosine:An anti‐herbivore defence in a speciose tropical tree genus, Inga (Fabaceae)

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.1.Plant secondary metabolites are a key defence against herbivores, and their evolutionary origin is likely from primary metabolites. Yet for this to occur, an intermediate step of overexpression of primary metabolites would need to confer some advantage to the plant. Here, we examine the evolution of overexpression of the essential amino acid, L‐tyrosine and its role as a defence against herbivores. 2.We examined overexpression of tyrosine in 97 species of Inga (Fabaceae), a genus of tropical trees, at five sites throughout the Neotropics. We predicted that tyrosine could act as an anti‐herbivore defence because concentrations of 4% tyrosine in artificial diets halved larval growth rates. We also collected insect herbivores to determine if tyrosine and its derivatives influenced host associations. 3.Overexpression of tyrosine was only present in a single lineage comprising 21 species, with concentrations ranging from 5% to 20% of the leaf dry weight. Overexpression was pronounced in expanding but not in mature leaves. Despite laboratory studies showing toxicity of L‐tyrosine, Inga species with tyrosine suffered higher levels of herbivory. We therefore hypothesize that overexpression is only favoured in species with less effective secondary metabolites. Some tyrosine‐producing species also contained secondary metabolites that are derived from tyrosine: tyrosine‐gallates, tyramine‐gallates and DOPA‐gallates. Elevated levels of transcripts of prephenate dehydrogenase, an enzyme in the tyrosine biosynthetic pathway that is insensitive to negative feedback from tyrosine, were found only in species that overexpress tyrosine or related gallates. Different lineages of herbivores showed contrasting responses to the overexpression of tyrosine and its derived secondary metabolites in their host plants. 4.Synthesis. We propose that overexpression of some primary metabolites can serve as a chemical defence against herbivores, and are most likely to be selected for in species suffering high herbivory due to less effective secondary metabolites. Overexpression may be the first evolutionary step in the transition to the production of more derived secondary metabolites. Presumably, derived compounds would be more effective and less costly than free tyrosine as anti‐herbivore defences.National Science Foundatio

    Tracking of Host Defenses and Phylogeny During the Radiation of Neotropical Inga-Feeding Sawflies (Hymenoptera; Argidae)

    Get PDF
    This is the final version. Available from Frontiers Media via the DOI in this recordCoevolutionary theory has long predicted that the arms race between plants and herbivores is a major driver of host selection and diversification. At a local scale, plant defenses contribute significantly to the structure of herbivore assemblages and the high alpha diversity of plants in tropical rain forests. However, the general importance of plant defenses in host associations and divergence at regional scales remains unclear. Here, we examine the role of plant defensive traits and phylogeny in the evolution of host range and species divergence in leaf-feeding sawflies of the family Argidae associated with Neotropical trees in the genus Inga throughout the Amazon, the Guiana Shield and Panama. Our analyses show that the phylogenies of both the sawfly herbivores and their Inga hosts are congruent, and that sawflies radiated at approximately the same time, or more recently than their Inga hosts. Analyses controlling for phylogenetic effects show that the evolution of host use in the sawflies associated with Inga is better correlated with Inga chemistry than with Inga phylogeny, suggesting a pattern of delayed host tracking closely tied to host chemistry. Finally, phylogenetic analyses show that sister species of Inga-sawflies are dispersed across the Neotropics, suggesting a role for allopatric divergence and vicariance in Inga diversification. These results are consistent with the idea that host defensive traits play a key role not only in structuring the herbivore assemblages at a single site, but also in the processes shaping host association and species divergence at a regional scale

    Chemical and physical defense traits in two sexual forms of opuntia robusta in Central Eastern Mexico

    Get PDF
    Sexually dimorphic plants provide an excellent opportunity for examining the differences in the extent of their defense against herbivores because they exhibit sex-related differences in reproductive investment. Such differences enable comparison of the sex with high reproduction expenses with the sex that expends less. The more costly sex is usually also better defended against herbivores. Generally, females are considered more valuable than hermaphrodites in terms of fitness; however, hermaphrodites are more valuable if they can produce seed by autonomous selfing, provided that the inbreeding depression is low and pollen is limited. We studied a gynodioecious population of Opuntia robusta from Central-Eastern Mexico, which has been reported to be trioecious, dioecious, or hermaphrodite, and addressed the following questions: 1) Is the hermaphrodite's reproductive output higher than the female's, and are hermaphrodites thus better defended? 2) Are plant tissues differentially defended? 3) Do trade-offs exist among different physical defense traits? and 4) among physical and chemical defense traits? We found that 1) hermaphrodites had a higher seed output and more spines per areola than females and that their spines contained less moisture. Non-reproductive hermaphrodite cladodes contained more total phenolic compounds (TPCs) than female ones. In addition, 2) hermaphrodite reproductive cladodes bore more spines than female cladodes, and 3) and 4) we found a negative relationship between spine number per areola and areola number per cladode and a positive relationship between spine number per areola per plant and TPC concentration per plant. Non-reproductive hermaphrodite cladodes contained a higher concentration of TPCs than female cladodes, and parental cladodes contained fewer TPCs than both reproductive and empty cladodes

    Leaf metabolic traits reveal hidden dimensions of plant form and function

    Get PDF
    International audienceThe metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization—a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function

    Leaf metabolic traits reveal hidden dimensions of plant form and function

    Full text link
    The metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization—a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
    corecore