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PLANT SC I ENCES

Leaf metabolic traits reveal hidden dimensions of plant
form and function
Tom W. N. Walker1,2*, Franziska Schrodt3, Pierre-Marie Allard4,5,6, Emmanuel Defossez1,
Vincent E. J. Jassey7, Meredith C. Schuman8, JakeM. Alexander2, Oliver Baines3,9, Virginie Baldy10,
Richard D. Bardgett11, Pol Capdevila12,13, Phyllis D. Coley14, Nicole M. van Dam15,16,17,
Bruno David18, Patrice Descombes2,19,20, María-José Endara21, Catherine Fernandez10,
Dale Forrister14, Albert Gargallo-Garriga22,23,24, Gaëtan Glauser1, Sue Marr17,25,26,
Ste!en Neumann17,25, Loïc Pellissier2,19, Kristian Peters17,25,26, Sergio Rasmann1, Ute Roessner27,
Roberto Salguero-Gómez28, Jordi Sardans22,23, Wolfram Weckwerth29,30, Jean-Luc Wolfender5,6,
Josep Peñuelas22,23

The metabolome is the biochemical basis of plant form and function, but we know little about its macroecolog-
ical variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metab-
olome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into !ve
metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization—a leaf
chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate
species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-
history strategies described by widely used functional traits. The metabolome thus expands the functional
trait concept by providing additional axes of metabolic specialization for examining plant form and function.

Copyright © 2023 The
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Works. Distributed
under a Creative
Commons Attribution
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INTRODUCTION
Plants produce a staggering diversity of metabolites—upward of
one million throughout the plant kingdom and many thousands
within an individual (1) (the metabolome). The plant metabolome
is well known to human society, being the source of most cosmetics
(2), flavors (3), andmedicines (4). Yet, little is known about how the
metabolome varies across the plant kingdom. The metabolome is
the biochemical basis of physiology, comprising primary metabo-
lites involved in cellular function (e.g., carbohydrates, amino
acids, and nucleic acids) and specialized metabolites produced to
confront stress (e.g., flavonoids and terpenoids) (1, 5, 6). The me-
tabolome thus encompasses the biochemical mechanisms through
which evolutionary and ecological processes shape plant form and
function [i.e., morphology and physiology (7)] (8, 9). Plant form
and function vary predictably among species because evolutionary
and ecological processes generally act to maximize fitness (10–14),

thus limiting the number of morphological or physiological strate-
gies that are viable (7, 15, 16). It follows that the metabolome should
also be constrained to a limited number of strategies that maximize
fitness (17). However, although cross-species studies are now
emerging (18–21), no attempt has been made to characterize how
the metabolome varies systematically throughout the plant
kingdom. We thus remain unable to place the vast diversity of the
plant metabolome into a coherent ecological context.

The plant functional trait concept offers a powerful framework
to contextualize the plant metabolome. Plant functional traits are a
standardized set of morphological and physiological characteristics
that provide universal metrics of plant form and function (22). Plant
functional traits have been pivotal in identifying the life-history
strategies that govern plant fitness (7, 15, 16); understanding plant
impacts on population (23), community (24), and ecosystem (25)
processes; and predicting global change effects on ecosystems
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(26). Plant functional traits thus provide a strong reference point
from which to interpret variation in the plant metabolome.
However, measurements of the metabolome remain absent from
the functional trait concept, partly because they yield complex
data describing thousands of metabolites from hundreds of bio-
chemical pathways (17). Advances in chemoinformatics make it
now possible to translate metabolite identities into a targeted set
of chemical properties (27, 28). Doing so resonates with the func-
tional trait concept—i.e., that quantitative characteristics provide a
bridge between identity and function (22)—and is an intuitive way
to contextualize the metabolome against plant functional traits. Yet,
while chemoinformatics is commonplace in natural products chem-
istry (29–31), it remains absent from ecology.

Contextualizing the plant metabolome against existing plant
functional traits raises two alternative hypotheses. On the one
hand, if the metabolome varies colinearly with functional traits,
then it offers a biochemical validation of the functional trait
concept. This validation is necessary because functional traits are
emergent properties of multiple biochemical processes (22, 32),
making them proxies for physiology that can be poor predictors
of ecological processes (33–35). On the other hand, if the metabo-
lome varies orthogonally to functional traits, then it describes di-
mensions of plant life-history variation missed by existing
functional traits. This orthogonal variation would enhance the ex-
planatory power of the functional trait concept by providing addi-
tional axes of trait specialization to examine plant form and
function. Either way, integrating measurements of the plant metab-
olome into the plant functional trait concept will yield insight into
how the metabolome varies across the plant kingdom while also of-
fering a high-resolution mechanistic lens with which to advance the
functional trait concept itself.

Here, we performed an assessment of the leaf metabolomes of
457 tropical and 339 temperate plant species to characterize varia-
tion in the metabolome and test whether it validates, or expands
upon, existing plant functional traits. First, we examined the chem-
ical properties of the whole set of identified metabolites (N = 4292)
to derive a minimum number of “metabolic functional traits” that
capture chemical variation in the leaf metabolome. We then char-
acterized how metabolic traits vary among species to identify major
axes of leaf metabolic specialization in the plant kingdom. Last, we
combined metabolic traits with eight widely used functional traits
(plant height, seedmass, stem-specific density, leaf area, specific leaf
area (SLA) and leaf carbon, and nitrogen and phosphorus concen-
trations; hereafter “classical traits”) (7) to determine whether axes of
metabolic specialization are colinear with, or orthogonal to, plant
life-history strategies described by classical functional traits.

RESULTS
Five chemical properties capture chemical variation in the
leaf metabolome
We expressed the leaf metabolomes of tropical (36) and temperate
(37) plant species as the presence or absence of annotated metabolic
features (i.e., metabolites) detected through liquid chromatogra-
phy–mass spectrometry (LC-MS) (tropical, N = 3356; temperate,
N = 2227). We then characterized the chemistry of the leaf metab-
olome by examining variation in the chemical properties of all iden-
tified metabolites from both datasets (N = 4292) (31). We focused
on 21 properties describing metabolite constitution, geometry, or

topology that have relationships with (bio)chemical activity (table
S1). Pairwise correlations among chemical properties (Fig. 1A,
top) reveal that properties separate into five clusters, each represent-
ing a distinct facet of leaf metabolite chemistry. The largest cluster
(Fig. 1A, green) describes overall size and structural complexity,
comprising total numbers of atoms and bonds, molecular weight,
a predictor of polarity based on the proportion of noncarbon
atoms [M log P; (38)], and related topological parameters [i.e.,
Wiener numbers (39) and eccentric connectivity (40)]. A second
cluster (Fig. 1A, purple) describes bond conjugation and reactivity,
comprising numbers of aromatic atoms and bonds, numbers of
atoms in the largest conjugated (pi-)system, and a derived complex-
ity index indicative of promiscuous activity in drugs [ fMF; (41)]. A
third cluster (Fig. 1A, yellow) describes polar intermolecular (non-
covalent) forces, comprising total and mass-specific polar surface
areas and numbers of hydrogen (H) bond donors or acceptors
(42, 43). These forces are important for the selective binding of
small molecules to DNA (44), RNA (45), and proteins (46). A
fourth cluster (Fig. 1A, blue) comprises two predictors of metabolite
polarity based on summed properties of atoms and bonds [X log P
(47) and A log P (48)], where lower values indicate higher polarity.
A final cluster (Fig. 1A, red) describes carbon bond saturation via
the relative occurrence of sp3 (saturated, three-dimensional) and sp2
(unsaturated, planar) hybridization (49). Overall, these clusters in-
dicate that the leaf metabolite chemistry is highly structured and can
be described by five distinct facets: size/complexity, bond conjuga-
tion/reactivity, contributions to polar intermolecular forces, general
polarity, and carbon bond saturation.

The strong collinearity among chemical properties (Fig. 1A, top)
suggests that the five facets of leaf chemistry can be represented by a
small number of discriminant variables. Indeed, we observe that a
principal components analysis (PCA) performed on a subset of five
chemical properties, one from each cluster (Fig. 1C), is equivalent to
a PCA performed on all 21 properties (PC1: r4290 = 0.97; PC2: r4290
= 0.99; PC3: r4290 = 0.93; P < 0.001 in all cases; Fig. 1B, left). We
selected molecular weight, H-bond acceptor count, aromatic atom
count, a-polarity (X log P), and carbon hybridization (sp3:sp2) as
five properties that are both general structural characteristics of
leaf chemistry and intuitive for nonspecialists to interpret (Fig. 1C
and table S1). However, most combinations of properties covering
all facets of leaf chemistry also yield equivalent PCAs (fig. S5). Pair-
wise correlations between all properties and subset principal com-
ponent (PC) scores further confirm that selected properties capture
observed leaf chemical variation, in that correlations are consistent
within each cluster (Fig. 1A, bottom). Selected properties also de-
scribe biologically relevant chemical space according to an existing
framework that classifies natural products based on size, then aro-
maticity, and then lipophilicity (PC1: r4290 = 0.99; PC2: r4290 = 0.87;
r4290 = 0.81; P < 0.001 in all cases; Fig. 1B, right) (31). The first axis
of the subset PCA (38% variance) separates heavy metabolites with
many H-bond acceptors from light metabolites with fewer H-bond
acceptors. Alignment between metabolite size and numbers of H-
bond acceptors is expected because larger molecules usually engage
in stronger intermolecular interactions (50). The second axis (37%
variance) separates reactive metabolites with more aromatic carbon
bonds from unreactive metabolites with more saturated carbon
bonds. This axis is also intuitive because conjugated bond systems
are unsaturated, reactive, and planar, whereas saturated bonds, such
as those abundant in fatty acids, are unreactive and three-
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Fig. 1. Variation in leaf metabolite chemistry can be captured by "ve chemical properties. (A) Coefficients for Pearson correlations among 21 chemical properties
(table S1) of identified annotated metabolites detected in tropical and temperate datasets (N = 4292). Properties are ordered on the basis of correlation similarity (hi-
erarchical clustering; Ward), with colors separating distinct clusters of properties (maximal silhouette width: K = 5). The bottom panel shows correlations between chem-
ical properties and scores from the first three axes of a PCA performed on a subset of five properties, as well as (B) between subset PC scores and either scores from a PCA
performed on all 21 properties (left) or metabolite positions on the first three axes of ChemGPS-NP (31) space (right panel). Circle sizes indicate coefficient strengths, while
fills discriminate between positive (black) and negative (white) correlations. (C) Chemical properties selected to represent each cluster, alongside chemical graphs of
metabolites with the lowest and highest values for each trait.
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dimensional (51). The third axis (18% variance) separates nonpolar
metabolites from polar metabolites (29). Our findings thus show
that leaf chemical variation can be represented by five chemical
properties, one from each facet of leaf chemistry.

Five chemical properties provide more information than
metabolite family
The five selected chemical properties not only represent leaf metab-
olite chemistry (Fig. 1), but also reflect known differences among
metabolite families. Using the subset PCA to interpret variation
among metabolite families (Fig. 2), we observe that, relative to
other identified metabolites, peptides are large, display average
bond saturation, and are moderately polar; carbohydrates are of
average size, display high bond saturation, and are highly polar;
and fatty acids are smaller, display high bond saturation, and are
of average polarity. Lignans, alkaloids, coumarins, and flavonoids,
families of specialized metabolites, display low bond saturation due
to the presence of many aromatic bonds, with alkaloids and couma-
rins also being relatively small. Terpenoids, a family of abundant
specialized metabolites (N = 2306), vary in size, bond saturation,
and polarity, echoing their diversity across the plant kingdom
(52). Although chemical properties generally differentiate among
metabolite families, all families have variable and overlapping
chemistries (Fig. 2, marginal boxplots). We thus suggest that chem-
ical properties, quantitative metrics of the chemistry that underpins
metabolite composition and activity, provide more precise informa-
tion about metabolite function than metabolite family identity.
Drug discovery and medicinal chemistry rely on many of the
same chemical properties to screen for bioactive molecules (29–
31). Such a perspective resonates with the functional trait concept
by reaching beyond taxonomy to describe function (22) and pro-
vides a strong foundation for a novel set of metabolic function-
al traits.

Five metabolic functional traits describe two axes of leaf
metabolic specialization
We converted selected properties into plant-level metabolic func-
tional traits to examine how the leaf metabolome varies among
tropical and temperate plant species. Tropical and temperate data-
sets were analyzed separately due to differences in data structure
(see Materials and Methods). We first compared the volume and
“lumpiness” (i.e., aggregation around values) of multidimensional
space occupied by metabolic traits to four null models to test
whether species converge on a restricted set of interrelated trait
combinations (7). Observed hypervolumes of metabolic traits are
98.1 to 99.8% smaller and 71.0 to 94.7% lumpier than those of
three null models assuming no trait covariance (tables S2 and S3;
P < 0.001 in all cases). However, observed hypervolumes are
larger (tropical: P = 0.002; temperate: P = 0.047) than that of the
null model assuming trait covariance and selection against
extreme values while also being similarly lumpy (tropical: P =
0.662; temperate: P = 0.858). By comparison, observed hypervo-
lumes of eight classical traits are smaller than null models assuming
no trait covariance (table S2; P < 0.001 in all cases), either the same
size as (tropical species; P = 0.154) or smaller than (temperate
species; P = 0.018) that of the null model assuming selection
against extreme values, and lumpier than all null models (table
S3; P < 0.001 in all cases). Collectively, these findings yield three in-
sights. First, metabolic functional traits are interrelated, so plants

are constrained to a limited number of viable metabolic trait com-
binations. Second, while extreme metabolic trait values may be se-
lected against in temperate species, this is not so for tropical species.
Expressing extreme leaf metabolome chemistry is thus a viable life-
history strategy in tropical environments, potentially due to more
intense biotic interactions selecting for a diversity of defensive leaf
metabolites and thus divergence of chemical strategies (53). Third,
metabolic traits are less aggregated around nonextreme values than
classical traits. Hence, although plants converge toward one of
several viable classical trait strategies [e.g., woody and non-
woody; (7)], they can display a wider array of leaf metabolome
strategies.

We performed PCAs on metabolic traits to characterize major
axes of leaf metabolic specialization among species. Metabolic
trait variation is consistent among tropical and temperate species,
with 92% variation being explained by the first two PCs (Fig. 3).
The first axis (tropical: 52%; temperate: 49%) separates species
that produce more unsaturated, aromatic, nonpolar leaf metabolites
from those that produce more saturated, polar, leaf metabolites.
This axis likely describes a spectrum of leaf chemical defense strat-
egies (12). Unsaturated aromatic metabolites, such as alkaloids,
coumarins, and flavonoids (Fig. 2), are reactive and serve as
toxins or antioxidants in response to stress (54–56). For instance,
conjugated bond structures can interfere with protein function by
binding covalently to sidechains (54), generate or quench oxidative
stress (55), or absorb damaging wavelengths of light (56). By con-
trast, saturated nonaromatic metabolites can play different roles in
leaf defense, both directly as toxins (57) and indirectly as signaling
molecules (58). An alternative explanation is that the first axis re-
flects an investment (or not) into defense metabolites (12), which
could arise due to the high cost of synthesizing aromatic metabolites
(13). However, all plants must defend their leaves against stress, and
we find that plants can maximize fitness at either end of this axis
(Fig. 3). It is thus more plausible that the first axis represents a
leaf chemical defense spectrum.

The second PCA axis (tropical: 40%; temperate: 43%) discrimi-
nates species that produce larger metabolites withmany H-bond ac-
ceptors from those that produce smaller metabolites with fewer H-
bond acceptors. This axis likely relates to leaf longevity because
large metabolites, such as lignans, peptides, and waxes, form the
basis of long-lived physical (59, 60) and storage (61) structures.
Many of these structures also depend on strong intermolecular
forces to form stable macromolecules or complexes (62, 63),
which are enhanced by H-bond donors and acceptors (43). As for
the first axis, plants can maximize fitness at either end of the second
axis, with species at the positive end of the axis investing in metab-
olites indicative of a longer leaf life span. Hence, the second axis is
probably a manifestation of the fast-slow continuum (64) at the leaf
level. Alternatively, the second axis may reflect an investment (or
not) into structurally complex metabolites for physical defense,
such as lignans or waxes (59, 60). However, these metabolites act
by creating rigid structures that lengthen the leaf life span anyway
(65), so physical protection is one component of leaf longevity. To-
gether, metabolic trait PCAs reveal two major axes of leaf metabolic
specialization. These axes relate to metabolite bond saturation and
polarity (i.e., a leaf chemical defense spectrum) as well as metabolite
size and propensity for intermolecular interactions (i.e., leaf longev-
ity), with many combinations yielding successful life-history
strategies.
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Axes of leaf metabolic specialization reveal hidden
dimensions of plant form and function
The apparent consistency of metabolic trait variation with classical
life-history theory (7, 12, 13, 15, 16, 64, 65) raises the possibility that
metabolic traits describe aspects of plant form and function already
captured by classical traits. We thus performed a PCA on metabolic
traits plus the same widely used functional traits used above to test

whether axes of leaf metabolic specialization are colinear with, or
orthogonal to, trait-based life-history strategies. Considered alone,
classical trait variation supports life-history theory (7), with the first
two PCs (tropical: 49%; temperate: 51%) describing the leaf eco-
nomics spectrum [SLA, leaf nitrogen, and leaf phosphorus; (16)]
and variation indicative of plant longevity [plant height and seed
mass; (64)] and hardiness [stem density and leaf carbon; (15)]
(fig. S1). However, when combining classical and metabolic traits
in the same PCA, the first four PCs (tropical: 66%; temperate:
67%) are equivalent to axes described by individual PCAs (Fig.
4A, lower marginal matrices). The first and third axes describe
the first two axes of leaf metabolic specialization (Fig. 3), whereas
the second and fourth axes describe the first two axes of classical
trait specialization (fig. S1). Pairwise correlations among all traits
further show that metabolic and classical traits do not covary
(Fig. 4, A and B) but separate into six clusters describing unique
aspects of either metabolic or classical trait variation. Hence,
major axes of leaf metabolic specialization vary orthogonally to
major axes of classical trait variation (fig. S4) and are at least
equally relevant for describing variation in plant form and function
among tropical and temperate plant species.

Leaf metabolism underpins energy production via photosynthe-
sis (66) but, in doing so, yields tissue that is sensitive to light (67)
and temperature (68) and is of high nutritional value to herbivores
(65). Plants are thus under selective pressure tomaximize photosyn-
thetic rates while also protecting leaf tissue against damage. While
this trade-off is consistent with life-history trade-offs derived from
classical traits (7, 15, 16), it does not necessarily follow that individ-
uals apply the same strategy in every organ to maintain fitness. We
observe that species with “productive” trait values (e.g., high SLA
and high leaf nitrogen) can produce leaves containing many
complex aromatic metabolites, species with “hardy” trait values
(e.g., high stem density and high leaf carbon) can produce leaves
containing many simple polar metabolites, and species with trait
values typical of a fast pace of life (e.g., low stature and small
seeds) can produce leaves with many large stable or structural me-
tabolites. Our findings thus question classical trait (16) and plant
defense (12) theory that predicts relationships between the leaf

Fig. 2. Variation among and within eight metabolite families is described by
"ve chemical properties. Biplots of PC1 scores and (A) PC2 scores or (B) PC3
scores from a PCA describing variation in five selected chemical properties (C hy-
bridization, H-bond acceptors, molecular weight, polarity, and aromatic atoms)
among all annotated leaf metabolites detected in 862 plant species (N = 4292;
line ends: metabolites; centroids: means). The PCA is functionally equivalent to a
PCA containing all 21 chemical properties (seemain text), with axes separating leaf
metabolites based on size (PC1), aromaticity (PC2), and a-polarity (PC3; see Fig. 1A,
bottom). Colors separatemetabolite families as indicated bymarginal boxplot fills/
labels [center: median; box: 25 to 75% quantiles; whiskers: 1.5 × IQR (interquartile
range); points: outliers beyond whiskers].

Fig. 3. Metabolic traits describe two axes of leaf metabolic specialization
among plant species. Biplots of PC1 and PC2 scores for PCAs describing variation
in five metabolic functional traits (arrows) between (A) tropical (brown; N = 457)
and (B) temperate (blue; N = 339) plant species. Axes separate species based on
the mean aromaticity versus polarity (inverse X log P) and carbon bond saturation
(PC1) and mean size/complexity (PC2) of all annotated leaf metabolites present
(Materials and Methods).
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chemical phenotype, plant productivity, and pace of life. In short,
metabolic functional traits describe unique dimensions of plant life-
history variation that are complementary to, and independent from,
those captured by classical functional traits.

DISCUSSION
In summary, we show that leaf metabolite chemistry is highly struc-
tured and can be described by five chemical properties. Using
chemical properties as metabolic functional traits reveals that
plants vary on two axes of leaf metabolic specialization—a leaf
chemical defense spectrum (i.e., bond saturation and polarity)
and leaf longevity (i.e., size and propensity for intermolecular inter-
actions). Axes of metabolic specialization are similar in tropical and
temperate species, with many combinations of trait values yielding
successful life-history strategies. Axes are also consistent with ex-
pectations from life-history theory that plants invest strategically
in tissue defense (12, 13, 16) and between a fast versus slow pace
of life (7, 64). Nevertheless, we find that metabolic trait variation
is orthogonal to, not colinear with, classical trait variation. Metabol-
ic functional traits thus reveal dimensions of plant life-history var-
iation missed by existing functional traits. We note that
metabolomics data were acquired differently for tropical and tem-
perate species and were matched to open functional trait databases.
Nevertheless, we find consistent variation in the leaf metabolomes

of 457 tropical and 339 temperate species that originate from dis-
tinct geographic distributions and evolutionary histories (fig. S1,
A and B), as well as that encompass most documented functional
trait variation (fig. S1G, red ribbons). We thus propose that distill-
ing the leaf metabolome into metabolic functional traits captures
macroecological patterns of metabolic variation widely across the
plant kingdom, enhances the explanatory power of the functional
trait concept, and offers a new set of tools for the discovery of
species or genotypes with trait combinations adapted to societ-
al needs.

MATERIALS AND METHODS
Sample collection and preparation
We used two existing datasets describing the leaf metabolomes of
tropical and temperate plant species (as the unit of observation).
The tropical dataset originated from a random subsample of tropi-
cal leaves from the Pierre Fabre Sample Library (69), which is an
archive of ~17,000 plant samples from in situ communities
around the globe that was originally collected for drug discovery
and is a registered collection of the European Union (registration
code: 03-FR-2020) (70). Samples were oven-dried (55°C for 3
days) and extracted using overnight maceration (8 g of sample
and 80 ml of ethyl acetate). Extracts were dried once (Genevac, SP
Industries, Warminster, PA, USA) and eluted [30 mg of extract plus

Fig. 4. Metabolic and classical traits describe unique dimensions of plant form and function. Correlation coefficients for pairwise Pearson correlations among
metabolic (Fig. 3) and classical functional traits (fig. S1) in (A) tropical (N = 457) and (B) temperate (N = 339) species. Traits are ordered on the basis of correlation similarity
(hierarchical clustering; Ward), with colors separating distinct clusters (maximal silhouette width: K = 6) and horizontal lines between matrices showing correspondence
between tropical and temperate traits. Bottom panel shows correlations between traits and scores from the first four axes of a PCA of the same traits (tropical: 66%;
temperate: 67%; LES, leaf economics spectrum). Circle sizes indicate coefficient strengths, while fills discriminate between positive (black) and negative (white)
correlations.
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200mg of silica, 1-g silica solid phase extraction cartridges, and 6ml
of dichloromethane (DCM) plus 85:15 DCM:MeOH] and then
dried again and resuspended in dimethyl sulfoxide at a final con-
centration of 5 mg ml−1. The temperate dataset originated from a
study of landscape-scale ecological variation in phytochemical di-
versity (37), wherein leaves were sampled from in situ grassland
communities across Switzerland. Briefly, leaves were dried (40°C
for 5 days), milled (Retsch TissueLyser, QIAGEN, Hilden,
Germany), and extracted (20 mg of tissue and 0.5 ml of
80:19.5:0.5 MeOH:H2O:H2CO2). Extracts were homogenized
(glass beads; 30 Hz for 3 min) and centrifuged (14,000 rpm for 3
min), and the supernatant was isolated for measurement.

Metabolomics measurements
Untargeted metabolomics was performed on all samples using ultra
high-performance LC-MS (UHPLC-MS). Tropical extracts were an-
alyzed using a Waters Acquity UHPLC system coupled to a Q-Ex-
active FocusMS (Thermo Fisher Scientific, Bremen, Germany) with
a heated electrospray ionization (HESI-II) source in positive mode.
Extracts (2 μl) were separated on an Acquity C18 column (50mmby
2.1 mm, 1.7 μm; Waters, Milford, MA, USA) at a flow rate of 600 μl
min−1 using a binary solvent system (A: H2O plus 0.1% H2CO2; B:
acetonitrile plus 0.1% H2CO2) and a linear gradient elution (5 to
100% B, 7 min) plus isocratic elution (100% B, 1 min). MS data
were acquired in data-dependent acquisition mode, in which MS/
MS scans were performed on the three most intense ions detected
during repeated full MS scans [full scans = 35,000 full width at half
maximum (FWHM) at mass/charge ratio (m/z) 200; MS/MS scans
= 17,000 FWHM; MS/MS isolation window width = 1 Da; and nor-
malized collision energy = 15, 30, and 45 units]. The MS was cali-
brated using a quality control (QC) mix containing caffeine,
methionine-arginine-phenylalanine-alanine-acetate, SDS, sodium
taurocholate, and Ultramark 1621 dissolved in acetonitrile/metha-
nol/H2O plus 1% H2CO2. Temperate extracts were analyzed using a
Waters Acquity UHPLC system coupled to a SYNAPT G2 MS
(Waters, Milford, MA, USA) with a heated electrospray ionization
(HESI-II) source in positive mode. Extracts (2.5 μl) were separated
on an Acquity C18 column (50 mm by 2.1 mm, 1.7 μm; Waters,
Milford, MA, USA) at a flow rate of 600 μl min−1 using a binary
solvent system (A: H2O plus 0.05% H2CO2; B: acetonitrile plus
0.05% H2CO2) and a linear gradient elution (2 to 100% B, 6 min).
MS data were acquired in data-independent acquisition mode, in
which all precursor ions across the full mass range (85 to 1200
Da) were fragmented to yield MS/MS spectra. The MS was calibrat-
ed using a QC mix derived from all sample extracts.

Metabolomics data preprocessing
Tropical MS data were treated using MZMine (version 2.53) (71).
Peak detection was performed using the centroid mass detector
(MS noise = 1 × 104; MS/MS noise = 0) and the ADAP chromato-
gram builder [minimum scan group size = 5, min. group intensity =
1 × 104, min. highest intensity = 5 × 105, and m/z tolerance = 12
parts per million (ppm)] (72). Peaks were deconvoluted using the
wavelets algorithm in ADAP with a signal to noise intensity
window (SN) [S/N threshold = 10; min. feature height = 5 × 105,
coefficient/area threshold = 130, peak duration range = 0 to 5
min, and retention time (RT) wavelet range = 0.01 to 0.03 min]. Iso-
topes were detected using the isotopes peak grouper (m/z tolerance
= 12 ppm, absolute RT tolerance = 0.01 min absolute, and

maximum charge = 2), and, where present, the most intense
isotope was chosen. Peaks were filtered to retain features having
an MS/MS scan and a RT of between 0.5 and 8 min, following
which they were aligned using the join aligner method (m/z toler-
ance = 40 ppm, absolute RT tolerance = 0.2 min, m/z weight = 2,
and RT weight = 1). Temperate MS data were treated using MS-
DIAL (73). Peaks were detected with a minimum height of 300,
and data were collected with an MS1 tolerance of 0.05 Da and an
MS2 tolerance of 0.01 Da from 100 to 1200 Da and 0.5 to 12 min.
Peaks were deconvoluted with a sigma window value of 0.5 and an
MS/MS abundance cutoff of 50. Last, raw features were aligned
using the QC mix with a retention time tolerance of 0.1 min. Fol-
lowing this, we separately clustered tropical and temperate metabol-
ic features into sets of spectrally similar “consensus” features using
molecular networks constructed on the Global Natural Products
Social (GNPS; precursor and MS/MS fragment ion mass tolerances
= 0.02 Da) (74, 75). We retained edges with a cosine score of more
than 0.7 and with more than six matched peaks, permitted edges
that connected two nodes only if each node appeared in the neigh-
bor’s “top 10” most similar node list, and, where necessary, limited
the total size of a cluster to the 100 highest scoring edges. Last, we
converted peak height/area data to presence-absence data by
summing peak heights/areas at the consensus metabolic feature
level and expressing them as a one (present) or zero (absent) (trop-
ical: N = 7343; temperate: N = 6682).

Metabolite annotation
We annotated all metabolic features with chemical information by
in silico spectral matching (76) and taxonomically informed scoring
(77) using a theoretically fragmented version of the LOTUS resource
(78–80), retaining matches with a minimum score of 0.7 and at least
six matched peaks.We assigned consensusmetabolic features with a
single consensus chemical classification, which we derived by taking
the most common chemical classification across individual features
contributing to a consensus feature. We filtered data to retain those
features that were annotated with a metabolite identifier [i.e.,
SMILES notation; tropical: N = 3356 (46%); temperate: N = 2227
(33%)]. We then derived the chemistry of annotated metabolites
by using SMILES identifiers to query the Chemistry Development
Kit (CDK) (27) with the package “rcdk” (81). The CDK comprises
51 chemical descriptors, but we focused on 21 chemical properties
that describe metabolite constitution, geometry, and topology (table
S1). We also derived values for annotated metabolites from the first
three dimensions of the ChemGPS-NP tool (28), which is an exist-
ing framework for classifying natural products that separates mole-
cules based on size, then aromaticity, and then lipophilicity (31).

Classical functional traits
All further data processing, analysis and visualization were under-
taken in R (82). For core functionality, we used the R packages
“cowplot” (83), “data.table” (84), “drake” (85), “furrr” (86), “future”
(87), “parallel” (82), “psych” (88), and “tidyverse” (89) (see below for
packages pertaining to specific steps). Plant species names were
cleaned against the Catalogue of Life and Encyclopedia of Life
using the global name resolver in the package “taxize” (90), follow-
ing which we added a taxonomic hierarchy using “taxonlookup”
(91). We removed 14 tropical (ferns, cycads, and conifers) and
nine temperate (ferns and trees) species that were phylogenetically
distinct from others within their respective datasets to prevent a
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small number of divergent species from overwhelming downstream
analyses (fig. S2). We obtained data for classical functional traits
with proven relevance to plant form and function from the open
access version of the TRY database (version 5) (92)—namely,
plant height (m), seed mass (mg), stem-specific density (mg
mm−3), leaf area (mm2), specific leaf area (mm2 mg−1) and leaf
carbon, and nitrogen and phosphorus concentrations (mg g−1) (7,
16, 93). After removing clear outliers (reported error risk ≥4; values
falling outside of documented limits), we calculated species-wise
means and gap-filled missing trait values for all species present in
the dataset (N = 46,905 species) using a two-step process. First, we
performed a Bayesian hierarchical probabilistic matrix factorization
imputation [package “BHPMF” (94)], which is a taxonomically con-
strained gap-filling approach that has been regularly applied to the
TRY database (7, 24). The imputation was repeated 90 times, each
time starting with a different combination of parameters (per-fold
samples = 900 to 1000, cross-validation steps = 10 to 20, and burn-
in steps = 10% data length) and filtering out extreme (>1.5 times the
maximum observed value for a trait) or highly uncertain (coeffi-
cient of variation of >1) gap-filled values. We then calculated
means of remaining gap-filled values across all iterations and
used these to replace missing cases in original trait data. Second,
we performed five iterations of multivariate imputation by
chained equations [package “mice” (95)] on the partially gap-
filled dataset and replaced remaining missing cases with the mean
values from all iterations. Following this, we filtered fully gap-filled
datasets for selected tropical and temperate species (see table S4 for
details about missing data) using genus-level mean trait values
where species-level data were not available (215 tropical species
and 5 temperate species). Note that trait data coverage differed sub-
stantially between tropical and temperate species (table S4). While
this undoubtedly reduced the strength of observed trait variation in
tropical relative to temperate data, it is unlikely that the reduced res-
olution of the tropical data changed the nature of functional trait
variation because artificially reducing the resolution of trait datasets
to genus level did not change the resulting PC axes (fig. S3). Last, we
accounted for non-normal distributions in plant height, seed mass,
and leaf area data using log10 transformations and summarized trait
variation among tropical and temperate species separately using
scores from the first two components of varimax-rotated PCAs per-
formed on all traits (fig. S1).

Species distributions
We matched species names to Global Biodiversity Information Fa-
cility (GBIF) IDs using “rgbif” (29) and gathered all available species
occurrences from the GBIF website (www.gbif.org; 29 September
2020; GBIF occurrence download: tropical DOI = 10.15468/
dl.824a9z, temperate DOI = 10.15468/dl.6wappm). Working with
each species individually, we filtered occurrences to include
human observations and living or preserved specimens recorded
from the year 1945 to present day and accompanied by either no
individual counts or counts with a reasonable value (>100) (96).
We used the packages “CoordinateCleaner” (97) to discard
records falling in the sea, outside the stated country, or within 10
km of capital cities, GBIF headquarters, or known biodiversity in-
stitutions; records lying more than five times the interquartile range
of the minimum distances to the nearest neighbor; and records con-
taining known issues with longitude/latitude information (i.e.,
zeros, rounding errors, or conversion errors from other coordinate

systems) (96, 97). Following this, we manually removed a further 20
tropical and 4 temperate records representing single occurrences
within a continent, leaving a total of 239,223 and 1,251,500
cleaned occurrences for tropical and temperate species, respectively.
We plotted cleaned occurrences to visualize the geographical
extents of tropical and temperate plant species (fig. S1, A and B),
although it is important to emphasize that samples for metabolo-
mics analyses were taken from within natural (not ornamental)
distributions.

Leaf metabolite chemistry
We collated all unique annotated metabolites detected in any trop-
ical or temperate species into a single dataset capturing overall var-
iation in the chemical properties of the leaf metabolome (N = 4292).
We tested for interrelatedness between metabolite chemical proper-
ties using pairwise Pearson correlations coupled with hierarchical
clustering (Ward; Fig. 1A, top) and estimated the number of dis-
crete clusters of chemical properties using the maximal average sil-
houette width (Fig. 1A, dendrogram) (98). We described major
dimensions of leaf chemical variation using a varimax-rotated
PCA performed on a subset of five representative chemical proper-
ties [one from each cluster: C hybridization ratio, H-bond acceptor
count, molecular weight, a-polarity (X log P), and aromatic atom
count]. The first three PC axes described 97% variation, which we
anchored back to individual chemical properties using pairwise
Pearson correlations (Fig. 1A, bottom). We tested whether the
subset PCA was functionally equivalent to a full PCA performed
on all 21 properties using two approaches. First, we performed pair-
wise Pearson correlations between subset versus full PC scores to
determine whether the two PCAs separated metabolic features sim-
ilarly on the same dimensions of chemical variation (Fig. 1B, left;
see main text for statistics). Second, we used a Procrustes rotation
test [package “vegan” (99); 999 permutations] to determine whether
maximally rotated configurations of full versus subset PCAs were
significantly (i.e., nonrandomly) associated (m12 = 0.04, r2 = 0.98,
P < 0.001). We also confirmed that the similarity among subset and
full PCAs was not sensitive to which chemical properties were se-
lected from each cluster. This was achieved by repeating Procrustes
rotation tests and PC score correlations for PCAs performed on
every combination of five chemical properties that covered all five
clusters and plotting distributions of resulting coefficients (fig. S5).
We performed pairwise Pearson correlations between subset PC
scores and values from the first three dimensions of the
ChemGPS-NP framework (28) to test for correspondence
between the subset PCA and existing descriptors of biologically rel-
evant chemical space (Fig. 1B, right; see main text for statistics). We
visualized chemical variation among metabolites using biplots of
PC scores from the subset PCA, grouped by biochemical class
(Fig. 2). We also illustrated the range of chemical structures cap-
tured by the five selected chemical properties by using the
PubChem sketcher (https://pubchem.ncbi.nlm.nih.gov//edit3/
index.html) to predict chemical graphs of metabolites with the
lowest and highest values for each property (Fig. 1C).

Plant-level metabolic functional traits
We selected C hybridization ratio, H-bond acceptor count, molec-
ular weight, X log P, and aromatic atom count to convert into five
plant-level metabolic functional traits. For each species (i.e., unit of
observation), we calculated the mean value of a chemical property
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considering all the metabolites present. In doing so, we generated
datasets akin those capturing classical functional trait variation
among tropical or temperate species but instead quantifying varia-
tion in the mean C hybridization ratio, H-bond acceptor count, mo-
lecular weight, a-polarity, and aromatic atom count of the
annotated leaf metabolome among tropical or temperate species.
We considered tropical and temperate datasets as separate entities
for data analysis of trait variation, for four reasons. First, while in
silico data treatment was identical for aligned MS data, sample col-
lection and LC-MS measurements were not (see above), making it
challenging to combine data on species-level metabolic variation
without inflating differences between them. Second, unlike geno-
mics and proteomics analyses, where only one type of molecule is
isolated, untargeted metabolomics aims to simultaneously isolate
thousands of molecules with a wide range of chemical properties
(17, 100). Technical decisions made during sample extraction and
analysis discriminate for or against certain types of metabolites,
which filters the resulting view of the metabolome. There is still
no single accepted method for extracting samples or acquiring me-
tabolomics data (101), so we chose here to use two datasets gener-
ated using different approaches to confirm that findings are not
sensitive to the methods chosen. Third, classical functional trait
and species occurrence datawere sparser for tropical than temperate
species (see the “Classical functional traits” section above), so we
chose to keep datasets separate rather than artificially reduce the
resolution of the temperate dataset. Last, maintaining a separation
between the two datasets increased our interpretive power by pro-
viding the opportunity to characterize coupling between the metab-
olome and functional traits that held true not only within but also
among tropical and temperate plant species.

Plant multidimensional space
Following (7), we explored constraints on the multidimensional
space occupied by metabolic and classical functional traits sepa-
rately for tropical and temperate species using an observed versus
simulated hypervolume approach. Briefly, we calculated an n-di-
mensional convex hull volume [package “geometry”; (102)] repre-
senting the observed multidimensional trait space occupied by
species, where n is the number of metabolic (n = 5) or classical (n
= 8) functional traits. We compared the observed hypervolume to
the same four simulated null hypervolumes used in (7), which tested
the following null hypotheses: (i) Traits vary independently and
have uniform distributions (i.e., each trait is a unique axis and no
selection against extreme trait values); (ii) traits vary independently
but have normal distributions (i.e., each trait is a unique axis and
selection against extreme trait values); (iii) traits vary independently
but distributions are as observed (i.e., each trait is a unique axis but
no assumptions about selection on values); and (iv) traits covary as
but have normal distributions (i.e., no assumptions about trait in-
terdependence but selection against extreme values). We simulated
null hypervolumes 999 times and used permutation tests [package
“ade4”; (103)] to test for differences between the overall size of ob-
served versus simulated hypervolumes and presented percent
changes between observed and mean simulated hypervolume sizes
(where positive = observed > simulated; table S2). We also calculat-
ed the “lumpiness” (i.e., aggregation around certain values) of
species in multidimensional space by splitting n-dimensional
space into 10 bins (i.e., 10n cells), counting the number of species
present in each cell, and calculating the minimum number of cells

required to capture 10% of species (7). Again, we tested for differ-
ences between observed and simulated null hypervolumes using
permutation tests and presented percent changes between observed
and mean simulated hypervolumes (table S3).

Axes of leaf metabolic specialization
We characterized major axes of leaf metabolic specialization sepa-
rately among tropical or temperate species using varimax-rotated
PCAs performed on metabolic functional traits. The first two PCs
explained 92% variation for both tropical and temperate species, re-
spectively, which we displayed using biplots of PC scores (Fig. 3).
We explored whether axes of leaf metabolic specialization (Fig. 3)
were orthogonal to, or colinear with, axes of classical functional
trait variation (Fig. 4) by doing varimax-rotated PCAs containing
metabolic plus classical functional traits, again separately among
tropical and temperate species. Four PCs were needed to explain
66 and 67% variation among tropical and temperate species, respec-
tively, which we displayed in two ways. First, we created a biplot
matrix of all pairwise combinations of the first four axes (fig. S4)
to visualize the lack of overlap betweenmetabolic and classical func-
tional traits. Second, we performed Pearson correlations between
PC scores and individual functional traits (Fig. 4, bottom panels).
Last, we examined interdependence within and among metabolic
and classical functional traits by performing pairwise Pearson cor-
relations (Fig. 4, top panels), clustering correlation coefficients (hi-
erarchical clustering; Ward), and identifying discrete clusters of
traits using the maximal silhouette width (Fig. 4, dendrograms)
(98). Dendrograms are organized on the basis of the outcome of a
tanglegram that tested for correspondence between the clustering of
tropical and temperate traits (Fig. 4, central connectors).
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Figs. S1 to S5
Tables S1 to S4
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