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Summary

� The need for species identification and taxonomic discovery has led to the development of

innovative technologies for large-scale plant identification. DNA barcoding has been useful,

but fails to distinguish among many species in species-rich plant genera, particularly in tropical

regions. Here, we show that chemical fingerprinting, or ‘chemocoding’, has great potential

for plant identification in challenging tropical biomes.
� Using untargeted metabolomics in combination with multivariate analysis, we constructed

species-level fingerprints, which we define as chemocoding. We evaluated the utility of

chemocoding with species that were defined morphologically and subject to next-generation

DNA sequencing in the diverse and recently radiated neotropical genus Inga (Leguminosae),

both at single study sites and across broad geographic scales.
� Our results show that chemocoding is a robust method for distinguishing morphologically

similar species at a single site and for identifying widespread species across continental-scale

ranges.
� Given that species are the fundamental unit of analysis for conservation and biodiversity

research, the development of accurate identification methods is essential. We suggest that

chemocoding will be a valuable additional source of data for a quick identification of plants,

especially for groups where other methods fall short.

Introduction

Cataloguing the world’s plant diversity has been a challenge for
centuries, and because of accelerated anthropogenic extinctions,
the rapid documentation of biodiversity is more critical than ever
(Mace, 2004; Valentini et al., 2009; Vernooy et al., 2010; Cris-
tescu, 2014). This is particularly true in tropical rainforests,
where the high diversity and co-occurrence of morphologically
and ecologically similar congeneric species have presented signifi-
cant challenges for identification (Gonzalez et al., 2009; Dexter
et al., 2010; Kress et al., 2015; Liu et al., 2015). Plant species have
typically been identified by botanical experts based on morpho-
logical characteristics, or more recently by sequencing several
chloroplast DNA regions or the internal transcribed spacer of
nuclear ribosomal DNA (ITS), referred to as ‘DNA barcoding’

(Gemeinholzer et al., 2006; Hollingsworth et al., 2009, 2011;
Chen et al., 2010; Kress et al., 2010; China Plant BOL Group
et al., 2011). Here we present evidence that chemical fingerprint-
ing or ‘chemocoding’ can be another tool for species identifica-
tion in confusing and/or closely related tree species in
challenging, hyperdiverse biomes.

No single identification method is without drawbacks. Mor-
phological methods are often labor-intensive, rely upon taxo-
nomic expertise and are the most prone to subjective errors,
particularly where phenotypic plasticity and cryptic taxa are
prevalent (de Carvalho et al., 2005; Costion et al., 2011).
Although DNA barcoding is rapid and straightforward, it can fail
to distinguish closely related plant species because of insufficient
sequence divergence in standard barcode markers (Kress et al.,
2009; Dexter et al., 2010; Liu et al., 2015) and may lead to faulty
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identifications in genera where species are of recent origin
(Razafimandimbison et al., 2004; Naciri & Linder, 2015; Pen-
nington & Lavin, 2015). These limitations are often exacerbated
in highly diverse tropical systems, as the proportion of species
belonging to young, species-rich genera is high (Richardson et al.,
2001). For example, in a subtropical Chinese forest, for the 44%
of species belonging to genera with more than two species, > 50%
shared barcoding sequences and could not be distinguished (Liu
et al., 2015). This led to an overall species resolution of only 67-
%. A similar problem is encountered in New World tropical rain-
forests, where DNA barcoding cannot reliably discriminate
species within ecologically important, species-rich genera such as
Inga, Ficus and Piper (Gonzalez et al., 2009; Kress et al., 2009).
While standard DNA barcoding for problematic groups can be
improved by adding data for additional loci, recently diverged
species will always be hard to distinguish using sequence data and
no standardized marker sets for such extended DNA barcoding
exist.

Many studies assessing diversity in surveys or plots for conser-
vation or basic science rely on identifying all individuals in a plot
to species level, including the large majority of individuals that
are without flowers or fruits (Dexter et al., 2010). Plots in the
tropics represent a daunting task, and are still faced with prob-
lematic identifications despite extremely well-trained botanists. A
related problem is the difficulty of achieving uniform species
identifications across multiple sites. For example, in a recent,
extensive analysis of the identifications for eight genera, the three
genera with the highest error rates were Andira and Tachigali (c.
50%) and Inga (c. 40%; Baker et al., 2017). And yet another sub-
stantial challenge is correlating the identities to species level for
saplings, small trees and adult trees, because ontogenetic changes
in leaf morphology may be considerable and juveniles do not bear
flowers or fruits. For example, a consortium to understand forest
dynamics has established 63 plots around the world where all
woody plants > 1 cm diameter at breast height (DBH) are
mapped and identified, the majority of which are juveniles
(www.forestgeo.si.edu). Thus, the issues and errors associated
with morphological species identifications of thousands of trees
in the tropical forests are serious.

Given that species are a fundamental unit of analysis for con-
servation, for quantifying biodiversity, and for understanding
ecological and evolutionary processes, the development of accu-
rate methods for identifying them is essential. In this paper, we
suggest that chemical fingerprinting (here termed chemocoding)
can provide an additional identification tool for species identifi-
cation in a species-rich tropical tree genus, particularly for mor-
phologically confusing or cryptic species. We examine its utility
both for distinguishing species within a single site, and for char-
acterizing within-species variation over wider geographic scales.
Moreover, chemocoding may be inexpensive enough to allow for
every individual tree to be tested.

We test the potential of chemocoding for species identification
within Inga Mill. (Leguminosae, Mimosoideae) because species
in this genus are difficult to distinguish morphologically and
show insufficient variation in barcoding sequences (Richardson
et al., 2001; Kress et al., 2009; Dexter et al., 2010; Dick & Webb,

2012). Inga is one of the most abundant and diverse Neotropical
genera in lowland forest communities (Valencia et al., 1994; ter
Steege et al., 2013), is widely distributed and has undergone
recent, rapid diversification (Richardson et al., 2001). For Inga,
genetic and morphological differentiation of closely related
species is low and the identification of a species can therefore be
difficult.

We propose the use of small, defense-related chemical markers
characterized via untargeted metabolomics in combination with
multivariate analysis for the construction of a phytochemical,
species-level fingerprint, which we define as chemocoding. We
evaluate the units defined by chemocoding with those defined
morphologically in a recent taxonomic monograph (Pennington,
1997) as well as with those defined using next-generation DNA
sequencing data of many hundreds of nuclear genes (Nicholls
et al., 2015; our unpublished data).

Materials and Methods

Study sites

Samples were collected at five sites that include a wide range of
soils but very similar climates throughout the Amazon and
Panama (Fig. 1). Barro Colorado Island is a field station adminis-
tered by the Smithsonian Research Tropical Institute located in

Fig. 1 Study sites: (1) Barro Colorado, Panam�a, (2) Nouragues, French
Guiana, (3) Tiputini, Ecuador, (4) Los Amigos, Peru, and (5) KM41 near
Manaus, Brazil.
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the Panama Canal (9°N, 80°W). It is a lowland moist forest with
2649 mm of precipitation a year and 4-month dry season with
mean monthly temperatures of 27°C (Leigh, 1999). The other
four sites do not have a pronounced dry season. The Nouragues
Ecological Research Station, French Guiana (4°N, 53°W), is
located inside the Nouragues National Reserve on the Guiana
Shield. Mean annual precipitation is 2990 mm and mean annual
temperature is 26.3°C (Grimaldi & Ri�era, 2001). Tiputini Bio-
diversity Station is located in the eastern lowland Ecuadorian
Amazon (0°S, 75°W), inside the Yasuni Biosphere Reserve. The
climate is humid and aseasonal, with an annual precipitation of
3320 mm and an average annual temperature of 26°C (Valencia
et al., 2004). Kilometer 41 (KM41, 2°S, 59°W) is a field station
of the Biological Dynamics of Forest Fragments project located
near Manaus, Brazil. Mean annual temperature is 26°C and aver-
age annual precipitation is 2651 mm (Radtke et al., 2007). Los
Amigos Biological Station is located in the southeastern lowland
Peruvian Amazon, in the Madre de Dios Department (13°S,
70°W). Mean annual rainfall is 2700–3000 mm. Due to winter
cold spells, the daily minimum temperature can drop to < 10°C;
the mean monthly temperature range is from 21 to 26°C (Pit-
man, 2007). For simplicity in the text, each site will be referred
to by the country only.

Study species

We examined saplings of Inga because this size class is the most
frequently censused for ecological research and also is the size
class that can be very difficult to identify. Morphological identifi-
cations were based on the most recent taxonomic Inga mono-
graph (Pennington, 1997), and made by four researchers (MJE,
TAK, PDC and KGD) who have worked in the field identifying
Inga for about five decades collectively. They consulted with the
botanists working in the 50-ha CTFS (Center for Tropical Forest
Science) plots in Panama and Ecuador and the plots in
Nouragues, French Guiana.

Sampling

We determined the power of chemocoding for discriminating
among species and among geographically disjunct populations
within species. We included different taxa that are similar in veg-
etative morphology and are very difficult to identify in the
absence of reproductive structures. Our examples include cases in
which these coexist at the same site or in two well-separated sites.
We also included cases of one species that is morphologically
uniform in collections from up to four sites (Table 1).

In addition, we tested the ability of chemocoding to correctly
distinguish simultaneously between populations of several dozens
of species at a regional scale (see Random Forest Analysis, below).
More examples can be found in Supporting Information Figs
S2–S9.

Collections

For each species, samples of expanding leaves were collected from
five saplings, 0.5–4 m in height, in the shaded understory. We
focused on expanding leaves as part of a study of plant–herbivore
interactions and also because secondary metabolites are at greater
concentration during the expansion stage than in leaves that have
matured and toughened (Wiggins et al., 2016). For each sapling,
we collected leaves that were between 20% and 80% of the aver-
age maximum size. Fresh leaves were dried at room temperature
with fans and silica gel for 24–48 h, transported to the University
of Utah and stored at �20°C. For DNA analysis we typically
included one sample per species per site.

Metabolomic analysis

Metabolites were extracted and analyzed following the protocol
of Wiggins et al. (2016), specifically designed for secondary
metabolites having intermediate polarity. In Inga, these are
mainly phenolics and saponins. Briefly, 100 mg of ground leaves

Table 1 Study species

Figure Case study Species and sites

Fig. 2 Two morphologically confusing species within a site Inga alata Benoist and Inga pezizifera Benth, French Guiana
Fig. 3 Morphological variation within one species at a site Inga acreana1 Harms, Ecuador
Fig. 4 Two morphologically similar species across sites Inga cf. brachystachys Ducke and Inga obidensis Ducke, French Guiana,

Brazil and Peru
Fig. 5 Identification of a widespread species across its range Inga auristellae Harms, Ecuador, Brazil and Peru
Supporting
Information Fig. S1

Two morphologically confusing species within a site Inga coruscans Humb. & Bonpl. ex Willd. and Inga laurina (SW.) Willd.,
Peru

Fig. S2 Two morphologically confusing species within a site Inga microcoma Harms and Inga umbellifera2 (Vahl) Steud., Ecuador
Fig. S3 Two morphologically confusing species within a site Inga chartacea Poepp. and Inga sapindoidesWilld., Ecuador
Fig. S4 Morphological and chemical variation within one

species at a site
Inga leiocalycina3 Benth., Ecuador

Fig. S5 Identification of a widespread species across its range Inga alata Benoist, French Guiana, Ecuador and Peru
Fig. S6 Identification of a widespread species across its range Inga pezizifera Benth, Panama, French Guiana and Brazil
Fig. S7 Identification of a widespread species across its range Inga alba (SW.) Willd., French Guiana, Brazil and Peru
Fig. S8 Identification of a widespread species across its range Inga marginataWilld., Panama, French Guiana, Ecuador and Peru

1I. acreana includes two morphotypes in Ecuador: T28 and T56.
2I. umbellifera includes two morphotypes in Ecuador: T50 and T73.
3I. leiocalycina includes two morphotypes in Ecuador: T65 and T86.
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was extracted in 1.0 ml of extraction buffer (44.4 mM ammo-
nium acetate (pH 4.8) : acetonitrile, 60 : 40, v/v). After extraction
for 5 min and centrifugation (13 793 g) for 5 min, the super-
natant was transferred to a glass vial and the extraction repeated.
The extracts were diluted fivefold by combining 200 ll of crude
extract with 790 ll of acetonitrile : water (60 : 40, v/v) plus 10 ll
of internal standard (1 mg ml�1 biochanin A in acetonitrile : wa-
ter, 50 : 50). Soluble metabolites were analyzed by ultra-
performance liquid chromatography coupled to mass spectrome-
try (UPLC-MS) using an Acquity UPLC I-Class system and a
Xevo G2 Q-ToF spectrometer equipped with LockSpray and an
electrospray ionization source (Waters, Milford, MA, USA).
Data were collected in negative ionization mode.

Raw data from the UPLC-MS analysis were processed for peak
detection, peak alignment and peak filtering using MassLynx
(Waters) and the R package XCMS (Smith et al., 2006; Tauten-
hahn et al., 2008; Benton et al., 2010). The parameters used
were: peak detection method ‘centWave’ (ppm = 15, peak-
width = c(5,12), snthresh = 5); peak grouping method ‘density’
(bw = 2); retention time correction method ‘obiwarp’; and inte-
grate areas of missing peaks method ‘chrom’. XCMS processing was
performed for each species independently, with five leaf samples
included as replicates. The results obtained by XCMS were post-
processed in the R package CAMERA to assign the various ions
derived from one compound (termed ‘features’) to that com-
pound (Kuhl et al., 2012). This uses a defined set of rules for
linking the precursor ion with adducts and neutral losses (see
Table S1 for a list of these). The parameters used were: peak
grouping after retention time ‘groupFWHM’ (perfwhm: 0.8); ver-
ify grouping ‘groupCorr’; annotate isotopes ‘findIsotopes’; and
annotate adducts ‘findAdducts’ (polarity = ‘negative’). For each
case study, the resulting peak tables for each species were com-
bined into a single peak table (m/z and retention time for each
peak) using the R package METAXCMS (Tautenhahn et al., 2011)
with the following parameters: peak filtering: none; m/z and
retention time tolerance: 0.05 and 12 s, respectively. Peak tables
are stored in MetaboLights (study ID: MTBLS574, https://
www.ebi.ac.uk/metabolights/), a publicly available database
(https://www.ebi.ac.uk/metabolights/MTBLS574).

Statistical analysis

The variation in metabolites across samples was quantified using
unsupervised multivariate methods (no prior classification of
samples), which is suitable for metabolomics data. For the first
four case studies, we chose methods for data reduction and pat-
tern recognition that group and visualize samples according to
their similarities without prior assignment of samples to classes
(Bartel et al., 2013).

To visualize grouping patterns across samples, we used hier-
archical clustering with multiple agglomerative algorithms
because this method works well for a limited number of
species (classes) and provides statistical power (Embrechts
et al., 2013). Peak intensities, or the total ion current (TIC),
were normalized by dividing by the sum of the TIC for all
features in the chromatogram of a sample. Subsequently, we

fitted a hierarchical clustering model to the normalized data
with 10 000 permutations using the R package PVCLUST

(Suzuki & Shimodaira, 2014). Hierarchical clustering was per-
formed using the Pearson’s correlation similarity measure, a
routine method adopted for ‘omics’ data (Reeb et al., 2015).
The clustering algorithm selection for each analysis was based
on the correlation between the original distance matrix and
the patristic distance in the hierarchical cluster diagram. Clus-
ters with AU (approximately unbiased) P-values of ≥ 95% are
considered to be strongly supported by the data. For more
details see Wiggins et al. (2016).

In addition, to test the overall accuracy of chemocoding to iden-
tify samples when presented with a very large number of species
(classes) simultaneously, we used supervised statistical learning
methods. Specifically, we chose Random Forest Analysis, which is
a powerful classification method for multivariate datasets with
many weak predictor variables along with a large number of species
(cases). This method has been widely adopted in remote sensing,
high-dimensional biological data (various ‘omics’) and ecology
(Breiman, 2001; Lawrence et al., 2006; Cutler et al., 2007, 2009).

Based on models that we constructed with the metabolomics
data, we used Random Forest to predict how well samples can be
classified to species. For this, a single sample-by-compound
matrix was generated using XCMS as described above. A total of
1000 trees were generated for each Random Forest Model and
100 variables were used at each split, which was sufficient to
arrive at a model with minimal prediction error (Breiman, 2001).
We performed the analyses for 82 species with samples selected
from a single site, as well as for 26 species found at two to four
sites. Analyses were performed using the RANDOMFOREST R pack-
age (Liaw & Wiener, 2002). R code for all of the analyses is pro-
vided in Methods S1 and S2.

Next-generation DNA sequence data

To determine the accuracy of our approach, we compared delimi-
tations based on chemocoding with the first resolved phylogeny
of Inga, accomplished through targeted enrichment and sequenc-
ing of 194 loci (259 313 bases; Nicholls et al., 2015; our unpub-
lished data). Due to Inga’s recent, rapid radiation (Richardson
et al., 2001), a previous phylogeny with over 6 kb of plastid and
nuclear DNA sequence did not resolve species-level relationships
fully (Kursar et al., 2009).

Results

Case study 1: two morphologically confusing or cryptic
species that are present at the same site

Inga alata Benoist and Inga pezizifera Benth are sister species
(Nicholls et al., 2015; our unpublished data; Fig. 2c). The
saplings can only be successfully differentiated by expert field
workers using subtle differences in the shape of the extrafloral
nectaries, the number of leaflets, the number of primary lateral
leaf veins and the color of the expanding leaves (Fig. S1). In addi-
tion, they differ in the morphology of their inflorescences
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(Pennington, 1997), but this feature is not available in the
saplings studied by many ecologists. We investigated how
chemocoding might be useful to separate these two confusing
species in Nouragues, French Guiana, where one species is often
found meters away from the other.

Consistent with DNA sequence differences (Fig. 2c),
chemocoding accurately determined species limits for five saplings
each of the two species. The profiles of secondary metabolites
showed visually evident differences between species (Fig. 2a).
Hierarchical clustering of UPLC-MS metabolomics data (98%
AUP (Approximately Unbiased) P-value, Fig. 2b) clustered the
samples into two distinct groups, one for each species.

We evaluated four further groups of species that are hard to
separate morphologically, and coexist at a single site (Figs S2–
S5). For three of these, chemocoding-based separation agreed
with DNA sequence differences (Fig. S2: I. coruscans and
I. laurina in Peru, Fig. S3: I. umbellifera T50, T72 and T73 in
Ecuador (where T numbers correspond to codes for morphotypes
in Tiputini, Ecuador), and Fig. S4: I. chartaceae and
I. sapindoides in Ecuador). For the fourth supplemental case,
chemocoding found substantial differences in secondary metabo-
lites between two morphotypes of I. leiocalycina (T65 and T86,
Fig. S5). T86 occurs in terra firme forests and T65 in floodplains
in the Ecuadorian Amazon, whereas DNA data placed these two
morphotypes into a monophyletic group (Fig. S5d). This may be
the result of plasticity in response to differences in habitat
(although we found no intermediate morpho- or chemotypes).
Alternatively, these may reflect strong selection in the face of gene
flow across this environmental gradient or these may be distinct
species.

Case study 2: a single species that shows morphological
variation within a site

Inga acreana Harms is a widely distributed species across South
America, from the Guyanas to the Amazon Basin in Colombia,
Ecuador, Peru and Bolivia (Pennington, 1997; Pennington &
Revelo, 1997). In the Tiputini Biological Station in Ecuador, it
comprises two distinct types that have the same morphology, but
that differ subtly in the color of the expanding leaves (T28 and
T56; T numbers are codes for morphotypes; Fig. S1), and co-
occur in floodplain habitats. We used chemocoding of five
saplings of each of these two leaf variants to determine if they
were the same or different chemotypes.

The two morphotypes showed no consistent metabolomic dif-
ferences (Fig. 3a). Hierarchical clustering models fitted to the
UPLC-MS data reveal no separate clusters (Fig. 3b). These results
agree with DNA data; the phylogeny from targeted enrichment
data placed these accessions representing these two morphotypes
into the same, otherwise unstructured, monophyletic group
(Fig. 3c). The color difference between the two morphotypes is
probably due to a difference in anthocyanin production, a form
of intraspecific variation sometimes seen in expanding leaves.

Case study 3: distinguishing among two morphologically
similar species across three sites

Cross-checking identifications amongst morphologically similar
tree species that occur at different sites is particularly challenging
in tropical forests (Baker et al., 2017). Inga brachystachys Ducke
and Inga obidensis Ducke are closely related (Fig. 4d), with
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overlapping distributions across the Amazon (Pennington, 1997;
Pennington & Revelo, 1997). They are morphologically very
similar in the vegetative state, making it problematic to assign
accurate species names (Fig. S1).

Chemocoding and hierarchical clustering of five saplings
from each of the three sites delimited the samples into two
groups, separating the French Guiana and Brazil samples from
those collected in Peru (100% AUP value, Fig. 4c). Together,
DNA sequence data (Fig. 4c), chemocoding and morphology
suggest that samples collected in Brazil and French Guiana are
a single species, I. obidensis, and that the chemically distinct
Peruvian samples may represent a different, as yet unidentified
species that, in its vegetative morphology, is similar to
I. brachystachys.

Case study 4: identification of a widespread species across
its range

To assess the variation of chemocoding profiles across geographic
space in a widespread species, we collected data on five saplings
per population of Inga auristellae Harms, a species that occurs
across northern South America. These came from four geographi-
cally separated populations: French Guiana, Ecuador, Brazil and
Peru (Fig. 1).

The different populations showed consistency in their chem-
istry across their wide geographic range (Fig. 5a). The hierarchical
clustering model shows no significant differences between
I. auristellae populations from different geographic areas (94%
AUP value, Fig. 5b). The DNA sequences analyses show that
although the four populations belong to the same species, there is
a strong geographic structure, with an initial split into east vs west

Amazonia, and then within each of these groups the samples clus-
ter by population (Fig. 5c). Thus, chemocoding shows consis-
tency in species characterization, despite some evidence of genetic
population structure without corresponding structuring of chem-
istry. A similar pattern was observed for another widespread
species: I. pezizifera (Fig. S6). A second widespread species,
I. alba, showed no geographic structure either in chemistry or in
DNA (Fig. S7).

Case 5: identification of a large number of species,
including comparisons among populations of widespread
species

The detailed case studies presented above allow a small number
of samples to be grouped by chemical similarity and statistically
validated without prior classification of the samples (unbiased).
Additionally, we sought to evaluate how often chemocoding
could correctly identify samples to species when we include a
large number of classes (species). To this end, we use statistical
learning techniques in a supervised strategy (prior classification of
the samples) to build a model based on metabolomics data for
identification of samples to species. Specifically, we used Random
Forest to assess the overall accuracy of chemocoding to distin-
guish between the 82 species of Inga that we sampled at the five
study sites (five saplings per species per site). Random Forest
works by creating many classification trees each trained using ran-
dom bootstrapped samples from the original metabolomics data.
A consensus classification is then chosen based on the majority
vote from all trees (Breiman et al., 1984). Of the five samples per
species we iteratively dropped one sample to train the model with
four samples and test the predictive accuracy with the fifth

(c)(b)

(a)

Time (min)

Fig. 3 Case study 2. A single species that
shows morphological variation within a site:
Inga acreana T28 and I. acreana T56 in
Ecuador. (a) Total ion chromatograms
showing relative intensities of peaks from
LC-QToF-MS in negative mode. (b)
Hierarchical clustering based on relative
abundances of UPLC-MS metabolites. The
numbers in red above each branch point are
the Approximately Unbiased confidence
levels; these indicate the probability that the
samples below that point are a cluster.
Clusters with values of 95 signify P = 0.05,
indicating that these clusters are strongly
supported by the data. (c) Clade containing
I. acreana T28 and I. acreana T56 adapted
from a resolved phylogeny based on next-
generation DNA sequence data (Nicholls
et al., 2015; our unpublished data).
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sample, such that each sample was used once for testing and four
times for training.

The resulting Random Forest model accurately classifies 94%
of the 410 individuals representing the 82 Inga species (each with
representatives from a single site, Table S2). Twenty-six of these
species occurred at two to four of the study sites, so we also exam-
ined the model’s classification accuracy when regional variation
across sites was included. In this case, our analyses correctly classi-
fied samples to species 96% of the time (Table S3). In addition,
90% of the time the classification model identified the correct
species and site, indicating that there were regional differences in
secondary metabolites within a species (Table S3). Overall, these
results demonstrate that even in the face of cross-site intraspecific
variation, there is sufficiently high interspecific variation to allow
unknown samples to be efficiently classified into units that corre-
spond to species as defined by morphology and DNA (Table S2).

Discussion

The need for new tools

The urgent need to catalog, manage and understand the ecol-
ogy and evolution of plant diversity has led to the develop-
ment of innovative tools to improve the discrimination and
identification of plant species. Traditional morphological- and
molecular-based taxonomic identification methods have proved

problematic for species-rich regions and highly species-rich
genera (Seberg & Petersen, 2009; Dick & Webb, 2012). And
it is precisely these diverse situations where accurate species
identifications are most crucial. Alternative new technologies
for plant identification in tropical trees include the use of
near-infrared (NIR) leaf spectroscopy. However, its potential as
a taxonomic tool has not been assessed across broad geographic
scales for widespread species (Dugarte et al., 2013; Lang et al.,
2015; Baker et al., 2017).

Here, we add chemocoding to the toolbox, and show that
small, defense-related chemical markers characterized via untar-
geted metabolomics have great potential for species identification
and in providing additional evidence for species delimitation and
taxonomic discovery. Chemocoding was a robust method for
species identification at a single site and across broad geographic
scales, even for Inga, where levels of interspecific morphological
variation are low and DNA barcoding is ineffective (Gonzalez
et al., 2009; Kress et al., 2009; Dexter et al., 2010).

Accuracy of identifications

An effective species identification method must be diagnostic of
species (recognizing all populations rather than only sub-specific
units or populations), and involve traits that are always present
(rather than inducible or otherwise phenotypically plastic). Our
analysis of Inga shows that entities identified as discrete
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morphospecies or phylogenetic taxa can indeed show constitutive
differences in chemical defenses that result in distinct
chemocodes. For example, our results show that chemocoding
correctly identified species at a single site and, most importantly,
across their ranges (Figs 2–5, S2–S9; Table S3). Even with 410
individuals from 82 species of Inga, with a given species occur-
ring at multiple sites, the Random Forest Analysis based on
chemocodes accurately classified 96% of the individuals
(Table S2). It also appears to be a robust method for identifying
widespread species where intraspecific geographic variation might
be problematic. For example, chemocoding of the widely scat-
tered populations of I. auristellae resolves them as a single group,
which is also resolved as monophyletic in our DNA sequence-
based phylogeny (Fig. 5). Nevertheless, it is important to con-
sider that depending on levels of migration, polymorphism and
selection, other outcomes are possible. In particular, some species
that are widespread may show significant divergence in chemistry
(e.g. I. alata (Fig. S8) and I. marginata (Fig. S9)). Hence, we cau-
tion that the efficacy of chemocode-based identification should
be explored in each candidate taxon. However, we conclude that
given the abundance and diversity of Inga species in neotropical
forests, and the difficulty of identifying them using morphologi-
cal characters (particularly in sterile material), chemocodes
provide a valuable taxonomic tool.

Chemocoding is unlikely to identify species reliably where
major components of plant chemistry show phenotypic plasticity.
Rather than being constitutive, chemistry could be age-
dependent (ontogeny or tissue age) or inducible by herbivores,
pathogens, light, etc. Since this could generate significant within-
site variation, we recognize that chemocoding may not work for
species where important chemical markers vary. However, studies
with several species-rich genera in the tropics have found that
inter-specific differences in the defensive metabolome are large
relative to intra-specific variation, even considering factors that
are recognized as generators of plastic variation such as leaf
ontogeny (expanding vs mature leaves; Sedio et al., 2017; Wig-
gins et al., 2016), light environment (sun vs shade; Sinimbu et al.,
2012; Bixenmann et al., 2016; Sedio et al., 2017), season (dry vs
wet; Sedio et al., 2017) and induction by herbivory (Bixenmann
et al., 2016). Even though plasticity may be an issue in some taxa,
it does not rule out useful application of chemocoding, but high-
lights the need to separate diagnostic from phenotypically plastic
characters.

Practicality

An identification method also needs to be practical. In other
words, it needs to be accurate, rapid and inexpensive, as is the
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case with DNA barcoding. However, in groups where barcoding
using standard markers cannot discriminate among species,
sequencing of many genes may be necessary, which can be time-
consuming and expensive. In the case of Inga, obtaining the
resolved phylogeny took several years and hundreds of thou-
sands of dollars (Nicholls et al., 2015). Furthermore, only a few
individuals of each species were sequenced. However, as per-
base pair prices for sequencing are dropping in next-generation
sequencing approaches, discriminating among species based on
DNA sequences from many hundreds of loci may become more
feasible.

For widespread use of chemocoding, we envision the creation
of a public library of reference ‘chemocodes’, analogous to iBOL
(ibol.org). In principal, chemocodes could be similar to barcodes
in that they employ a limited set of compounds that are both
constitutively produced and diagnostic of species. Instead, our
method relies on the entire chemical fingerprint (typically a suite
of > 100 compounds) to identify species. Our choice is based on
the variation observed in single species within and across sites
(e.g. I. auristellae, Fig. 5), taking into account variation caused by
ontogeny.

We have successfully tested chemocoding on taxa from other
groups, such as species from the families Euphorbiaceae, Mal-
vaceae, Moraceae, Rubiaceae and Violaceae, among others (data
not shown), suggesting that our approach works with groups
other than Inga. Our data are publicly available (see the Materials
and Methods section) allowing others to attempt to develop diag-
nostic compounds for species identification. Nevertheless, the
most challenging issue to address before chemocoding can be
widely used will be the application of our approach across differ-
ent laboratories. For this, one must ensure that the same
metabolic traits are used in all laboratories. In contrast to DNA
barcoding, which uses standardized markers across taxa, each
species is scored using different traits. At present, we do not know
the extent to which chemical fingerprints will differ, depending
for example on the exact column used for liquid chromatography
or the exact model of mass spectrometer used. To address this
issue such that chemocoding can be applied generally may require
a more rigorous approach, in particular the application of tandem
MS or MS/MS (instead of simplifying the analysis as suggested
below). Another issue is that, while we used compounds with
intermediate polarity for chemocoding of Inga, nonpolar com-
pounds such as terpenes or highly polar compounds such as non-
protein amino acids may work best with other clades.

Because ecological studies based on long-term monitoring
plots require the accurate identification of thousands of juvenile
and adult trees, we consider here whether chemocoding could be
applied to large numbers of samples. Currently, we have used
chemocoding rather than DNA-based analyses for classifying
over 1000 samples of Inga and have found chemocoding to be
effective and convenient.

In terms of scaling up, one consideration is that these analyses
can be carried out more expediently. The methods used in the
present study range from easily accomplished to more complex
methods. For example, sample preparation (e.g. drying) in the
field and sample extraction in the laboratory are both

straightforward. In addition, chemical analysis is largely free of
contamination issues, which are a serious concern in DNA bar-
coding analyses, where specificity of primers may be low
(Hollingsworth et al., 2011). Other components could be simpli-
fied to streamline the analysis. These include collecting mature
instead of expanding leaves. Most often, rainforest plants do not
have expanding leaves, restricting chemocoding to a minority of
saplings at any given point in time and reducing the utility of
chemocoding. We found that mature leaves have most, but not
all, of the chemical signals found in expanding leaves (Lokvam
et al., 2007; Wiggins et al., 2016), so the use of mature leaves
should be feasible. Additionally, we used UPLC with a 150-mm
column, followed by detection with a high-resolution time-of-
flight mass spectrometer, an expensive analysis. To simplify this,
we recommend using a shorter, 50-mm column, saving solvent
and instrument time, followed by detection with a quadrupole
mass spectrometer. Single quadrupole, triple quadrupole or ion
trap detectors are much less expensive than a time-of-flight spec-
trometer. While these provide lower mass resolution, both nega-
tive and positive mode data can be obtained in a single run,
something that generally is not possible with a time-of-flight
spectrometer. Based on our extensive work on Inga, only some of
which is presented here, most pairs of similar species should be
distinguishable using the proposed simplifications. There are
some cases where two species have similar chemistry and mor-
phology and the simpler chemical analyses may lump these into a
single chemotype. But our experience suggests that these would
show high ‘within-chemotype’ variation, indicating the need for
more sophisticated chemical methods that can effectively answer
the question at hand. In our hands, chemocoding gave clear
results and was practical in terms of time and cost. Using the sim-
plifications suggested above would decrease cost and time. We
estimate that manual extraction and automated chromatography
and data analysis could take 20 min and $20.00 per sample at the
time of writing. In summary, because chemocoding may work in
circumstances where barcoding does not, we propose that it pre-
sents a novel and practical approach for surveying large numbers
of individuals, possibly thousands of samples.

Conclusions

Our aspiration is not to claim that chemocoding will replace
DNA barcoding or morphology-based identification methods,
nor that chemocoding can determine species boundaries.
Instead we suggest that it is a tool that provides a valuable addi-
tional source of data to facilitate identification of plant species,
especially for groups where traditional methods fall short. Che-
mocoding may be especially valuable in identifying species in
recent radiations where morphological distinctions between
species are slight and standard barcode markers do not provide
sufficient resolution. However, it could also be used more
broadly for species identification in cases where hundreds or
thousands of samples need analysis, with the added benefit of
providing information on defensive metabolites. In general, it
can help by standardizing species names across multiple sites,
and even in pinpointing entities that may be species new to
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science. Such is the case for our third example (case study 3:
I. obidensis and I. cf. brachystachys in Brazil, French Guiana and
Peru), where chemocoding and DNA suggest that the samples
collected in Peru might represent a new species. Our approach
is especially amenable for field biologists who work in networks
of forest inventory plots since it can consistently distinguish
amongst multiple species across geographic space (Figs 4, 5;
Tables S2, S3), and hence can help in taxonomic integration
across plots.

Experience with some taxa may show that chemocodes could
help to distinguish groups of individuals that show similar plastic
responses to shared abiotic environments or natural enemies (re-
gardless of whether these correspond to species, e.g. Fig. S5). If
so, chemocoding could be a very valuable way of dividing indi-
vidual plants into ecologically significant sets and improving our
understanding of the plant–herbivore adaptive landscape. Given
the key role of plant chemistry in many aspects of plant–herbi-
vore–enemy interactions, it may be tremendously valuable to see
plant communities in terms of chemotypes of hosts experienced
by herbivores (Endara et al., 2017).

The use of metabolites as tools in systematics has a long history
and many antecedents (Gibbs, 1974; Smith, 1976; Harborne &
Turner, 1984). While this has traditionally been used to investi-
gate evolutionary relationships, based on the presence, absence
and distinctive structures of specific classes of secondary metabo-
lites in different groups at all taxonomic levels (Singh, 2016),
chemocoding differs in that it is designed to quantitatively dis-
criminate species across samples. This uses an unsupervised statis-
tical approach that will probably yield consistent results
independently of a priori ideas of species classifications. We see
great potential in chemocoding to assist in the inventory of
species-rich forests and potentially in the discovery of new
species.
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Fig. S3 Two morphologically confusing or cryptic species that
are present at the same site: Inga umbellifera and I. microcoma in
Ecuador.

Fig. S4 Two morphologically confusing or cryptic species that
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