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Summary:  
 
• Plants are widely recognized as chemical factories, with each species producing dozens to 

hundreds of unique secondary metabolites. These compounds shape the interactions between 
plants and their natural enemies. Here we explore the evolutionary patterns and processes by 
which  plants generate chemical diversity, from evolving novel compounds to unique 
chemical profiles.  

• We characterized the chemical profile of one-third of the species of tropical rainforest trees 
in the genus Inga (~ 100, Fabaceae) using UPLC-MS based metabolomics and applied 
phylogenetic comparative methods to understand the mode of chemical evolution.  

• We show that: 1) Each Inga species contain structurally unrelated compounds and 
exceptionally high levels of phytochemical diversity. 2) Closely related species have 
divergent defense profiles, with individual compounds, major compound classes and 
complete chemical profiles showing little to no phylogenetic signal. 3) At the evolutionary 
time scale, a species’ chemical profile shows a signature of divergent adaptation. At the 
ecological time scale, sympatric species were the most divergent, implying it is also 
advantageous to maintain a unique chemical profile from community members. 4) Finally, 
we integrate these patterns of chemical diversity with a model for how chemical diversity 
evolves. We posit that the combinatorial “Lego-chemistry” and rapid changes in regulatory 
mechanisms may explain the observed large shifts in chemical profiles between closely 
related taxa.  

 
Keywords: chemical defense, secondary metabolism, evolution, metabolomics, phytochemical 
diversity, plant secondary metabolism, UPLC-MS, Inga 
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Introduction 
For sessile organisms such as plants, secondary metabolism plays a fundamental role in 1 

mediating biotic interactions ranging from mutualisms (e.g. pollination) to antagonisms (e.g. 2 
competition and defense). Plant secondary metabolites, sometimes referred to as specialized 3 
metabolites, which are classically considered nonessential for basic cellular function, are 4 
exceedingly diverse, with nearly 1,000,000 predicted to exist across the plant kingdom (Afendi et 5 
al. 2012) . It has long been thought that this incredible diversity strongly influences the ecology 6 
and evolution of interactions between plants and their pests and pathogens (Ehrlich and Raven 7 
1964; Endara et al. 2017; Endara et al. 2018). Plant secondary metabolites are also essential for 8 
plants' ability to survive in harsh abiotic environments by offering protection from UV damage 9 
and desiccation (Weng 2014). The evolution of novel compounds or unique combinations of 10 
compounds (hereafter, chemical profile) can be highly adaptive, increase plant fitness, and 11 
facilitate species coexistence (Salazar et al. 2016; Vleminckx et al. 2018; Forrister et al. 2019). 12 
Thus, understanding the origin and maintenance of chemical diversity is central to both the 13 
evolution and ecology of plants. 14 

 Much of the theoretical and empirical literature supports the idea that selection has 15 
placed a premium on chemical diversity in plants (Jones 1991; Berenbaum and Zangerl 1996; 16 
Richards et al. 2016; Kessler and Kalske 2018; Salazar et al. 2018; Wetzel and Whitehead 2020). 17 
A species’ chemical profile is thought to arise from a diverse set of selective pressures ranging 18 
from abiotic factors, such as water loss and solar radiation, as well as selection exerted by a 19 
multitude of herbivores, pathogens, and mutualists (Weng 2014; Endara et al. 2017; Salazar et al. 20 
2018). For example, increased phytochemical  diversity in tropical forests is negatively correlated 21 
with both the number of herbivore species associated with a given host (Salazar et al. 2018; 22 
Endara et al. 2021) and herbivory (Richards et al. 2015). In addition to producing a diverse set of 23 
compounds, recent studies have highlighted the importance for a given species to maintain a 24 
unique chemical profile relative to other species in its community (Kursar et al. 2009; Forrister et 25 
al. 2019; Endara et al. 2021). While there is a clear consensus on the value of phytochemical 26 
diversity, the underlying evolutionary processes that generate chemical diversity in plant lineages 27 
remain widely debated (Wetzel and Whitehead 2020).  28 

Here we ask how plants generate chemical diversity and what evolutionary processes lead 29 
to novel compounds and unique chemical profiles. To address this question, we build off the 30 
classic ‘escape and radiate’ theoretical frame, first suggested a half-century ago by the work of 31 
Dethier (1954), Fraenkel (1959), and Ehrlich and Raven (1964). In this model, random mutations 32 
in biosynthetic genes lead to the production of novel defense compounds, often through the 33 
gradual embellishment of core structures into more complex and derived compounds (Berenbaum 34 
1983, Berenbaum and Feeny 1981; Coley et al. 2019). If these derived compounds have stronger 35 
deterrent properties or are effective against different enemies, selection acts to promote the novel 36 
genotype. In this study, we test the prediction put forth by the ‘escape and radiate model’ that 37 
chemical evolution proceeds in a gradual step-wise mannor through the modification of core 38 
structures (Ehrlich and Raven 1964, Berenbaum 1983). To test this, we combine untargeted 39 
metabolomic and comparative phylogenetic methods to characterize the chemical profiles for 40 
nearly 100 species of tropical trees in the genus Inga (Fabaceae). By focusing on a recently 41 
radiated monophyletic genus of trees, we attempt to understand how chemistry evolves at tips of 42 
the phylogenetic tree over a relatively short period of evolutionary history. This offers a different 43 
perspective than studies of chemical evolution focused on deeper phylogenetic scales such 44 
as divergence among families (e.g., Wink 2003). 45 

Inga is a useful case study for exploring how secondary metabolism evolves over short 46 
phylogenetic distances. Inga is a speciose genus with ~300 tree species in tropical moist forests 47 
throughout the New World. At any given site, it usually constitutes one of the most abundant and 48 
speciose genera, with up to 40 coexisting species (Valencia et al. 2004). Multiple lines of 49 
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evidence have implicated the importance of chemistry in the ecological and evolutionary 50 
processes that have shaped the genus (Kursar et al. 2009; Endara et al. 2017; Coley et al. 2018). 51 
Moreover, Inga, and other speciose tropical genera such as Bursera, Psychotria, Piper and 52 
Protium are among the most phytochemically diverse plant lineages that have been documented, 53 
often having more compounds in a single genus than entire plant communities in temperate 54 
ecosystems (Sedio et al. 2018). Thus, Inga is an illustrative model for the generation of 55 
phytochemical diversity as a whole. The results presented in this study, build off of previous 56 
work in Inga which focused on a few specific metabolites (Coley et al. 2019) or broad compound 57 
classes (Kursar et al. 2009). Here we increase the phylogenetic coverage and leverage 58 
metabolomics to greatly expand our exploration of the relationship between evolutionary history 59 
and chemical similarity. 60 

We use untargeted metabolomics to quantify intraspecific phytochemical diversity, 61 
examine how chemical similarity between congeners changes over evolutionary time and 62 
geographic distance, and finally quantify the phylogenetic signal of individual compounds as well 63 
as larger chemical classes. In doing so we aim to address the following questions and hypotheses: 64 
 65 

1) Do species invest in phytochemical diversity by producing structurally unrelated 66 
compounds? 67 

Investment in structurally diverse defensive compounds is adaptive for protection against a 68 
broad suite of pests and pathogens (Salazar et al. 2018; Wetzel and Whitehead 2020; Endara et al. 69 
2021), yet investment in chemical defense comes at a cost (known as the ‘growth-defense trade-70 
off’) (Strauss et al. 2002; Panda et al. 2021; Monson et al. 2022). Investment in chemical defense 71 
is expensive both in terms of the carbon and nitrogen used as inputs for the biosynthetic products, 72 
as well as in terms of transcribing and regulating enzymes involved in secondary metabolism 73 
(Gershenzon 1994). It is unclear, whether biosynthetic constraints and pleiotropy of biosynthetic 74 
enzymes limit phytochemical diversity or lead to evolutionary trade-offs between chemical 75 
classes (Koricheva et al. 2004; Agrawal et al. 2009; Gershenzon et al. 2012). Because 76 
phytochemical diversity is potentially adaptive (Richards et al. 2015; Salazar et al. 2018; Endara 77 
et al. 2021), we hypothesize that selection will favor investment in a diverse suite of compounds 78 
rather than structurally related ones.  79 

 80 
2) Does the entire chemical profile diverge between closely related species and does it 81 

evolve under divergent selection? 82 

 The ‘escape and radiate’ model, predicts that closely related species would have similar 83 
defensive profiles (Ehrlich and Raven 1964; Berenbaum and Feeny 1981; Berenbaum 1983; 84 
Coley et al. 2019). However, it has also been posited that diffuse coevolution between plants and 85 
their natural enemies would result in divergent adaptation in defense traits(Endara et al. 2015; 86 
Maron et al. 2019). The latter argues that it is advantageous for a species to not only have a 87 
diversity of compound classes, but to be different from other species in their community in order 88 
to not share pests and pathogens (Kursar et al. 2009; Bagchi et al. 2014; Salazar et al. 2018; 89 
Forrister et al. 2019). Here we ask if species’ chemical profiles show phylogenetic signal, or if 90 
they have diverged sufficiently to erase the effect of shared evolutionary history. We also 91 
incorporate biogeography asking if sympatric species are more or less divergent in their chemical 92 
profile than species occurring in parapatry. Biogeography is an important factor because at the 93 
population (within species) level, selection pressures may differ at different sites. Additionally, 94 
because sympatric species should be divergent in ecologically relevant traits to coexist (Chesson 95 
2000), we hypothesize that sympatric relatives will be more divergent in their chemical profile 96 
than parapatric ones. Finally, we use a novel modeling framework (Anderson and Weir 2020) to 97 
formally test the hypothesis that chemical profiles are evolving under divergent adaptation.  98 
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 99 
3) Are individual compounds phylogenetically conserved?  100 

The evolution of novel chemistry is assumed to be the result of stepwise changes to 101 
chemical structures resulting in more derived chemical defenses over evolutionary time 102 
(Berenbaum and Feeny 1981; Coley et al. 2019). This process should lead to a pattern of 103 
phylogenetic conservatism of metabolites and biosynthetic pathways (Ehrlich and Raven 1964; 104 
Salazar et al. 2018). To test this prediction, we mapped all individual compounds present in Inga 105 
onto the phylogeny and estimated their phylogenetic signal. We then used ancestral state 106 
reconstruction to estimate the number of times each compound had transitioned on the 107 
phylogenetic tree (Courtois et al. 2016). In contrast to the ‘escape and radiate’ model, we 108 
hypothesize that in order for species to invest in structurally diverse compounds and diverge from 109 
close relatives, the mode of chemical evolution would not proceed in a stepwise manner. Rather, 110 
rapid changes based on transcriptional regulation would result in low phylogenetic signal of 111 
individual compounds.   112 

 113 
4)  Is there evidence of metabolic integration or apparent trade-offs between biosynthetic 114 

pathways?  115 

Comparative phylogenetic analyses of defense traits have revealed both trade-offs (negative 116 
correlations) (Kursar and Coley 2003; Agrawal and Fishbein 2006; Agrawal et al. 2009; Coley et 117 
al. 2018; Monson et al. 2022) and positive correlations  (Agrawal and Fishbein 2006), providing 118 
evidence for evolutionary integration and defense syndromes. For example, trade-offs between 119 
compound classes that share the same biosynthetic precursor are well supported in the literature 120 
(Keinänen et al. 1999; Nyman and Julkunen-Tiitto 2005; Agrawal et al. 2009). Nevertheless, 121 
other studies have found little evidence for these trade-offs based on meta-analysis (Koricheva et 122 
al. 2004). Here we ask whether biosynthetic constraints lead to trade-offs that persist over 123 
evolutionary timescales or if each branch of the biosynthetic pathway evolves independently.  124 
 125 
Materials and Methods 126 
Study sites and species sampling: 127 

 We studied Inga between 2005 and 2014 at five lowland tropical rainforest sites across 128 
the Amazon basin and in Panama (Table S1), where we extensively surveyed understory saplings, 129 
a prolonged and key vulnerable stage in the life cycle of tropical forest trees (Coley et al. 2018). 130 
We sampled Inga across the full distributional range of the genus.  We spent approximately 16 131 
people-months per site collecting data in the field. Specifically, we exhaustively searched each 132 
site for all Inga species, taking measurements on morphological and defense traits for a total of 133 
97 species as well as one species from its sister genus, Zygia. Species delimitation was based on 134 
the combination of morphology, phylogenetic reconstruction (Nicholls et al. 2015) and in some 135 
cases for morphologically difficult to identify individuals, we relied on chemocoding to confirm 136 
species identifications (Endara et al. 2018). Young leaves at approximately 50% full expansion 137 
were collected in the understory from 5 to 10 spatially separated individuals (with very few 138 
exceptions for rare species where we included 3 individuals). We focused on expanding leaves, as 139 
they receive more than 70% of the lifetime damage of a leaf (Coley and Aide 1991), and their 140 
chemical profiles are an important factor for host associations of insect herbivores  (Endara et al. 141 
2017; Endara et al. 2018). In general, we found the chemical profile of each species to be highly 142 
canalized and previous work has shown that 5 individuals is sufficient to capture ~75% of 143 
compounds encountered in up to 15 individuals (Endara et al. 2021). Samples were dried in the 144 
field at ambient temperature in silica immediately following collection, and then stored at -20o C.  145 

Characterization of Inga Chemistry:  146 
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 147 
a) Soluble secondary metabolites: 148 

Metabolites were extracted from dried leaf samples in the Coley/Kursar lab at the 149 
University of Utah using a solution of (60:40, v/v) ammonium acetate buffered water, pH 4.8: 150 
acetonitrile, producing 2mL of retained supernatant from 100mg (+/- 2.5 mg) of sample for 151 
chromatographic analysis following the UPLC-MS methods developed in Wiggins et al. (2016). 152 
Extraction weight (percent dry weight) was measured gravimetrically by subtracting dry marc 153 
from the mass of pre-extraction plant material. Small molecules (detector range of 50-2000 Da) 154 
from the extraction supernatant were analyzed using ultraperformance liquid chromatography 155 
(Waters Acquity I-Class, 2.1 x 150mm BEH C18 and 2.1 x 100 mm BEH Amide columns) and 156 
mass spectrometry (Waters Xevo G2 QToF) (UPLC-MS) in negative ionization mode. A 45 157 
minute reverse-phase gradient was used for the C18 column with water (0.1% formic acid) as the 158 
mobile phase and acetonitrile (0.1% formic acid) as the stationary phase, flow rate was 0.5 159 
mL/min and column temperature was 40˚ C (46). For the Amide column we used regular phase 160 
chromatography starting with 95% acetonitrile (+0.1% formic acid) and 5 % water (+0.1% formic 161 
acid). We used a linear gradient over 12 minutes ending with 30% acetonitrile (+0.1% formic 162 
acid). MS/MS spectra were acquired by running DDA, whereby MS/MS data were collected for 163 
all metabolites that ionized above a set threshold (5000 TIC). 164 

 165 
 166 

b) L-Tyrosine:  167 

Some Inga species invest in the overexpression of the essential amino acid L-168 
tyrosine as an effective chemical defense (Coley et al. 2019). Tyrosine is insoluble in our 169 
extraction buffer, so a different protocol was used to determine the percentage of leaf dry 170 
weight. Extractable nitrogenous metabolites were extracted from a 5 mg subsample of 171 
each leaf using 1 mL of aqueous acetic acid (pH 3) for 1 h at 85oC  (Coley et al. 2019). . 172 
Fifteen microliters of the supernatant were injected on a 4.6 x 250 mm amino-propyl 173 
HPLC column (Microsorb 5u, Varian). Metabolites were chromatographed using a linear 174 
gradient (17–23%) of aqueous acetic acid (pH 3.0) in acetonitrile over 25 min. Mass of 175 
solutes in each injection were measured using an evaporative light scattering detector 176 
(SEDERE S.A., Alfortville, France). ELSD temperature was 75˚C with 2.2. bars of 177 
compressed N2 and instrument gain was set to 6. Tyrosine concentrations were 178 
determined by reference to a four-point standard curve (0.2–3.0 mg tyrosine/mL, r2=0.99) 179 
prepared from pure tyrosine. 180 

a) Compound separation, annotation, and assignment to species: 181 

Following HPLC and UPLC-MS data acquisition, metabolites were quantified and 182 
assigned available structural information in all samples using an untargeted metabolomics 183 
pipeline developed by our research group (see Endara et al. (2021) for details). In this pipeline, 184 
spectral features are extracted from raw MS data, and related features are grouped into 185 
compounds based on shared retention time and correlated abundance between scans using 186 
CAMERA (Kuhl et al. 2012). We employed a variety of techniques in order to assign individual 187 
compounds into classes including NMR structural characterization, MS/MS-based spectral library 188 
searches using GNPS (Wang et al. 2016), in silico compound annotation, and machine learning 189 
prediction. As a result, MS/MS data for each compound were uploaded to GNPS for annotation 190 
of putative structures and compound classes. These analyses generate 1) a species by compound 191 
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abundance (MS-1 peak intensity measured by total ion current) matrix and 2) a compound by 192 
compound MS/MS spectral cosine similarity matrix, which are then combined into a pairwise 193 
species similarity matrix which accounts for both shared compounds between species and the 194 
MS/MS structural similarity of unshared compounds. 3) A classification table is created with the 195 
assignment for all annotated compounds based on ClassyFire (Djoumbou Feunang et al. 2016).  196 
All code for this pipeline is deposited in a git repository (Forrister & Soule, 2020; 197 
https://gitlab.chpc.utah.edu/01327245/evolution_of_inga_chemistry).  198 

a) Indices for chemical similarity and phytochemical diversity.   199 

To test for phylogenetic signal of the entire chemical profile and quantify divergence between 200 
species, we developed a method for quantifying overall chemical similarity between two species 201 
(Endara et al. 2021). This provides a challenge because few compounds are shared between 202 
species, making classic distance metrics such as Bray-Curtis uninformative (Endara et al. 2021; 203 
Sedio et al. 2017). Our method, which is similar to the method developed by Sedio et al. (2017), 204 
accounts for the fact that two species may have different compounds that are structurally similar 205 
(Endara et al. 2018; Endara et al. 2021). Specifically, we leverage MS/MS spectra as a proxy for 206 
the structural similarity between compounds (Wang et al. 2016) . In this method, total chemical 207 
similarity between species is a function of the normalized abundance of shared compounds plus 208 
the normalized abundance of unshared compounds weighted by their structural similarity in the 209 
molecular network (see (18) for details). 210 
We quantified investment in phytochemical diversity for each focal species using its chemical 211 
profile and the MS/MS molecular network to calculate the functional Hill number (Chao et al. 212 
2014). This diversity measure accounts for both variation in compound abundance and structural 213 
similarity in the molecular network. In short, it calculates the effective number of equally 214 
abundant and structurally distinct compounds produced by a given species (Chao et al. 2014) . 215 
We compared this diversity index with a null model where we assembled compounds into 216 
chemical profiles through a bifurcating process from root to tip on the Inga phylogenetic tree. 217 
This null model is rooted in the null models often employed in community ecology, but is 218 
expanded to incorporate phylogenetic relatedness.  The null model represents the chemical 219 
profiles randomly drawn from the entire pool of compounds found in our study samples, while 220 
controlling for evolutionary history, compound frequency and abundance (see Appendix 1 for 221 
detailed explanation of the null model). To make a representative null model we matched the 222 
number of compounds produced by a given species and the number of compounds shared 223 
between any two closely related species with the values observed in the actual data, while 224 
randomizing the structural relatedness of shared compounds. We normalized phytochemical 225 
diversity values of each species relative to our null model.   226 
 227 
Phylogenetic reconstruction of Inga:  228 

A phylogenetic tree containing 165 Inga accessions, including taxa sampled at multiple 229 
sites, was reconstructed using a newly generated targeted enrichment (HybSeq) dataset of 810 230 
genes. These 810 loci include those presented in Nicholls et al. (Nicholls et al. 2015), 231 
supplemented with a subset of the loci from work by Koenen et al. (Koenen et al. 2020). DNA 232 
library preparation, sequencing and the informatics leading to final sequence alignments follow 233 
protocols in Nicholls et al. (2015). For the phylogenetic inference, we accounted for the putative 234 
effect of incomplete lineage sorting by constraining the maximum likelihood phylogeny with the 235 
topology obtained from a coalescent-based method. First, we inferred gene trees for 810 loci 236 
using IQtree 2 (Minh et al. 2020). The best substitution model was estimated for each loci using 237 
the ModelFinder (Kalyaanamoorthy et al. 2017) module implemented in IQtree 2. For each gene 238 
tree, we performed 1,000 bootstrap replicates with the ultrafast bootstrap approximation (Hoang 239 
et al. 2017). The resulting gene trees were subsequently used as the input for ASTRAL-III to 240 
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estimate a phylogeny in a summary coalescent framework (Chernomor et al. 2016), after 241 
contracting branches with bootstrap support <10. We then used the topology obtained with 242 
ASTRAL to perform a constrained maximum likelihood tree search in IQtree 2. We performed a 243 
partitioned analysis (Chernomor et al. 2016) after inferring the best-partition scheme for the 810 244 
genes and the best substitution model for each partition using ModelFinder. Branch support was 245 
estimated with ultrafast bootstrap approximation (1,000 replicates). The phylogenetic tree was 246 
subsequently time-calibrated using penalized likelihood implemented in the program treePL 247 
(Smith and O’Meara 2012). We used cross-validation to estimate the best value of the smoothing 248 
parameter and implemented secondary calibration points on the crown and node ages of Inga with 249 
an interval of 9.2-11.9 My and 13.4-16.6 My, respectively. Finally, the complete phylogeny was 250 
pruned to include only the 98 species for which chemistry data were available. 251 

Phylogenetic Comparative Methods and Ancestral State reconstruction: 252 
For phylogenetic signal of continuous traits we calculated Blomberg’s K (Blomberg et al. 253 

2003) using function phylosignal in the R package picante v.1.8.2 (Kembel et al. 2010). K is close 254 
to zero for traits lacking phylogenetic signal, and higher than 1 when close relatives are more 255 
similar than expected under the classic Brownian motion evolutionary model. For the presence 256 
and absence of individual compounds we calculated the D-statistic (Fritz and Purvis 2010) using 257 
the caper package (Orme 2012).  258 

We took a stochastic character mapping approach for the ancestral state reconstruction of 259 
compound presence/absence on the Inga phylogeny. Specifically, we used the function 260 
make.simmap (Bollback 2006) from R package phytools v.0.7-47 (Revell 2012) to estimate the 261 
state of each internal node on the phylogeny using 100 simulated trees.  Based on the ancestral 262 
state reconstruction of each compound, we created an index of evolutionary lability, calculated as 263 
the number of times a given compound transitioned between present and absent divided by the 264 
number of species where a compound is present. Low values for this index indicate strong 265 
phylogenetic conservatism, where a compound likely evolved few times and was retained within 266 
a given lineage. Values near or above 1 indicate that a compound is evolutionarily labile, having 267 
been gained or lost as many times as the compound was present.  268 

To model how the complete chemical profile changes over time, we used a modeling 269 
framework developed by Anderson and Weir (2020) which uses simulated trait values based on 270 
either Brownian motion or Ornstein–Uhlenbeck. This framework also test for divergent 271 
adaptation by adding a term for the interactions between lineages during simulated trait evolution. 272 
 273 
Results:  274 

Our untargeted metabolomics pipeline (Endara et al. 2021) allowed us to characterize 275 
thousands of individual compounds and determine the similarity of chemical profiles across 276 
species. In total we observed 9,105 unique compounds across 808 samples. Inga species invest 277 
substantial resources in soluble secondary metabolites, averaging 194 ± 103 (mean ± s.d.) unique 278 
compounds per species, and comprising 37 ± 11% (mean ± s.d.) of the expanding leaf’s dry 279 
weight (Fig. S1). We were able to classify 42.5% of compounds, a substantial improvement from 280 
the 2.9% achieved from library matches alone (Fig. 1). Although our extraction and detection 281 
methods did not explicitly exclude primary metabolites, the vast majority of annotated 282 
compounds were assigned to secondary metabolites, specifically chemical classes that have been 283 
classically implicated in plant defense against pathogens and herbivores, including flavonoids and 284 
saponins. Similarly, given the scale of this study, it should be noted that a small fraction of the 285 
chemical compounds analyzed in the study are not likely to be found in-planta, as they could be 286 
adducts, chemical artifacts and decomposition products. The inclusion of said artifacts should not 287 
influence the general conclusions of this study because they are relatively rare.  288 

 289 
1. Individual species invest in structurally diverse compounds.  290 
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We asked whether biosynthetic tradeoffs constrain a plant’s ability to invest in 291 
structurally unrelated compounds (i.e., the cost of maintaining enzymes in multiple metabolic 292 
pathways), or whether selection promotes investment in chemical diversity. To answer this 293 
question, we quantified investment in phytochemical diversity using functional Hill numbers and 294 
compared these findings to a null model. For the majority (94%) of species, phytochemical 295 
diversity was within the range of values expected by our null model.  The rest of the species 296 
exceeded that range (4%) or were underdispersed (2%) (Fig). The absence of species with lower 297 
phytochemical diversity than the null model indicates that all species invest in structurally diverse 298 
compounds.  299 

 300 
2. Chemical profiles evolve under divergent adaptation 301 

To test for phylogenetic signal of the entire chemical profile and quantify divergence 302 
between species, we developed a method for quantifying overall chemical similarity between two 303 
species (Endara et al. 2021) . We compared these calculations to estimates of chemical similarity 304 
expected from a null model (Appendix 1). We found that chemical similarity was highest for 305 
intraspecific comparisons, but quickly decreased to the point where two species were as 306 
dissimilar as expected under our null model based on all interspecific comparisons (Fig. 3; Fig. 307 
S3). Within a species, chemical similarity was highest between individuals at a single site (but 308 
rapidly decreased between individuals of the same species at different sites (Fig. 3). We also 309 
found that interspecific chemical similarity was highly divergent even between sister species and 310 
that the majority (83%) of pairwise comparisons between species fell within the range of our null 311 
model (Fig. 3, Fig. S3). Sister species at different sites (parapatric) were divergent and sympatric 312 
sister species were more divergent than parapatric sister species. Interspecific chemical similarity 313 
of the entire chemical profile showed no phylogenetic signal (Mantel test: r= -0.03, P= 0.68, 314 
Fig.S3).  315 

To formally test the hypothesis that a species chemical profile is evolving under 316 
divergent selection, we used recently developed phylogenetic comparative methods to model 317 
different modes of trait evolution and select the best fitting model. We found strong support for 318 
the divergent adaptation model over models that assume all lineages evolve independently of 319 
others on a tree (i.e. Divergent vs Brownian motion and the Ornstein–Uhlenbeck process) (Table 320 
S2). Our results show that each species evolves to have a unique chemical profile compared to 321 
close relatives. Unlike a species chemical profile, we found that traits related to the amount of 322 
chemical investment (number of compounds, gravimetric chemical investment, and 323 
phytochemical diversity; Fig. S1) were best explained by an Ornstein–Uhlenbeck process model, 324 
indicating that these traits are evolving towards an optimal trait value (Table S2) rather than 325 
diverging. 326 

 327 
3. Many compounds showed no phylogenetic signal and were evolutionary labile. 328 

The majority of compounds are detected in only a few species (median = 4), and roughly 329 
half (53%) of compounds showed no phylogenetic signal (Fig. 4A). Although some compounds 330 
are clustered in specific clades, many compounds are found dispersed across the phylogeny (Fig. 331 
4B). We found that the majority of compounds (58%; lability >= 1.0) were labile having evolved 332 
as many or more times than they were present (Fig. 4C).  333 

 334 
4. Evidence for phylogenetic signal at larger chemical scales    335 

The chemical profiles of Inga species are dominated by two classes of compounds that 336 
can be broadly categorized as phenolics and saponins. Phenolic chemistry arises from the 337 
flavonoid pathway (Fig. S5 contains a summary of Inga phenolics). Inga phenolic chemistry is 338 
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based on flavone and mono/polymeric flavan backbones that are extensively modified. Inga 339 
saponins are glycosylated triterpenoids that have their origin in the mevalonic acid pathway and 340 
as such are biosynthetically distinct from phenolic compounds.  We mapped investment in each 341 
of these classes onto the phylogeny (Fig. 5) and then tested for phylogenetic signal of each 342 
subclass of these compounds. We found that quinic acid gallates (K= 0.68, p = 0.02), tyrosine and 343 
related depsides (K= 0.73, p=0.03) as well as saponin glycosides (K= 1.02, p=0.007), showed 344 
significant phylogenetic signal. In contrast, all flavonoid subclasses showed no phylogenetic 345 
signal (Fig. 5).  346 

We used phylogenetic structural equation modeling (SEM) to determine if chemical 347 
classes were correlated with each other (Fig. S4). We applied this approach because it controls for 348 
the phylogenetic non-independence of species as well as the biosynthetic non-independence of 349 
predictor variables. Our SEM model revealed several trade-offs between compound classes 350 
suggesting that there may be switch points between major branches of the biosynthetic pathway: 351 
1) saponin glycosides were negatively correlated with the left and right branch of the flavonoid 352 
pathway, 2) quinic acid gallates were negatively correlated with the right side of the flavonoid 353 
pathway and 3) the right branch of the flavonoid pathway was negatively correlated with the left 354 
branch (Fig. S4).  355 

 356 
Discussion:  357 

In this manuscript we set out to thoroughly characterize the profile of plant secondary 358 
metabolites produced in nearly 100 species of Inga from across their geographic range. We 359 
combine untargeted metabolomics and phylogenetic comparative methods to answer questions 360 
about how chemical profiles evolve. Our analysis uncovered nearly 10,000 unique metabolites 361 
produced across the genus. Based on compound annotations, most of these compounds were 362 
flavonoids and saponin glycosides (Fig. 1), both prominent secondary metabolite classes in 363 
plants. These profiles largely exclude primary metabolites because they are generally observed in 364 
much lower concentrations than secondary metabolites and therefore are not readily detected in 365 
our UPLC-MS pipeline. Moreover, when these chemical extracts were incorporated at only 0.5–366 
2% DW into artificial diets, they were highly detrimental to larval growth and survival, 367 
suggesting that they are toxic and contain defensive compounds (reviewed in (Coley et al. 2018)). 368 
Although many of the compounds observed in this study may play a role in defense, determining 369 
function of compounds is very challenging in metabolomics studies. To that end, in this study we 370 
characterize the chemical profile as a whole, which contains a diversity of compounds likely 371 
selected for a variety of functions.  372 

 373 
Diversity and Divergence:  374 

Based on our analytical models, we found that each Inga species produces compounds 375 
that are more phytochemically diverse than would be expected by chance. This result underscores 376 
the strong selective pressure to generate and maintain chemical diversity that plants and other 377 
sessile organisms face from both harsh abiotic conditions and from a multitude of herbivores, 378 
pathogens, and mutualists (Weng 2014; Salazar et al. 2018; Wetzel and Whitehead 2020). Our 379 
results rely on a null model framework and the use of Functional Hill numbers which are a 380 
unifying and flexible approach to diversity measures (Chao et al. 2014). They consider functional 381 
relatedness (cosine based structural similarity between compounds) as well as compound 382 
abundance. We chose to exclude abundance measures in our measure (Q=0) which results in a 383 
cosine weighted structural similarity score.  384 

We found strong evidence that a species’ chemical profile evolved rapidly with little 385 
phylogenetic signal in chemical similarity (Fig. 3, Fig. S3). These results confirm previous 386 
findings that defense strategy has little phylogenetic signal in Inga and other plant lineages 387 
(Becerra 2007; Kursar et al. 2009; Endara et al. 2017; Salazar et al. 2018; Volf et al. 2018). We 388 
also found evidence for population-level divergence across sites in a species chemical profile 389 
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(Fig. 3A). This occurred despite the fact that there is essentially no limitation on the dispersal of 390 
Inga species across the Amazon, such that the metacommunity for any site is the entire Amazon 391 
basin (Dexter et al. 2017; Endara et al. 2021). Instead, site differences in abiotic and biotic 392 
conditions may drive intraspecific population-level differences in chemical profiles, including 393 
variation in soil types and precipitation patterns or the potentially complete turnover of herbivore 394 
communities (our unpublished data). The fact that we observed divergent chemical profiles 395 
between close relatives in parapatry (Fig 3), is unsurprising given many differences across sites in 396 
abiotic and biotic selection pressures (Thompson 2005). However, the fact that sister species in 397 
sympatry (where all individuals are exposed to a similar community of pests and abiotic 398 
conditions) displayed much higher niche divergence (Fig. 3), is consistent with natural selection 399 
to not share pests and pathogens (Bagchi et al. 2014; Forrister et al. 2019). These results also 400 
highlight the importance of chemistry as an important niche axis facilitating species' coexistence 401 
(Chesson 2000; Endara et al. 2021).  402 

Our modeling framework selected divergent adaptation as the best model to explain how 403 
interspecific differences in chemical profiles are evolving (Table S2). This divergent adaptation 404 
model shows that ecological interactions among coexisting species shape the evolutionary 405 
trajectory of a trait. A pattern of divergent adaptation also requires a divergent selective force, 406 
such as one imposed by specialists pests and pathogens (Ehrlich and Raven 1964). In contrast, if a 407 
species’ chemical profile was evolving in response to an abiotic stressor, such as solar radiation, 408 
we would expect chemistry to converge among coexisting species.  We posit that defenses, 409 
including a species’ chemical profile, are one of the first traits to diverge during or after the 410 
speciation process, especially compared with non-defensive traits such as those used for resource 411 
acquisition (Endara et al. 2015).  412 

Consistent with our findings that Inga species invest in phytochemical diversity (Fig. 2), 413 
many species of Inga produce compounds from multiple biosynthetically distinct classes (Fig. 414 
S4). The ability for some species to produce compounds from up to five different classes coupled 415 
with the fact that one class did not completely exclude the production of other classes indicate 416 
that physiological constraints may not impose large biosynthetic trade-offs among compound 417 
classes. For example, saponin production was negatively correlated with investment in flavan-3-418 
ols, yet there were nine species that invested in both of these pathways simultaneously. The lack 419 
of strong physiological constraints likely facilitates the evolution of novel chemical profiles and 420 
divergence between closely related species. 421 

 422 
What is the mode of chemical evolution in Inga?  423 

Increasingly, evidence is supporting the adaptive value of chemical diversity both within 424 
and among plant species (Richards et al. 2015; Salazar et al. 2018; Wetzel and Whitehead 2020; 425 
Whitehead et al. 2021). But how are novel structures generated and what is the mode of chemical 426 
evolution? In the ‘escape and radiate’ model for defense evolution, novel structures evolve 427 
through the gradual embellishment of core structures into more complex and derived compounds 428 
(Berenbaum and Feeny 1981, Berenbaum 1983; Coley et al. 2019). However, the results 429 
presented in this study do not support a model of chemical evolution underpinned by stepwise 430 
gradual embellishments. Instead, we found that each Inga maximizes phytochemical diversity and 431 
produces structurally unrelated compounds (Fig. 2); chemical similarity decreases rapidly over 432 
short phylogenetic distances (Fig. 3); and chemical profiles are evolving under divergent 433 
adaptation (Table S2). This high divergence between closely related species is supported by the 434 
fact that most compounds are highly labile (Fig. 4), and many compound classes show low 435 
phylogenetic signal (Fig. S2). Taken together, these patterns point towards regulation of gene 436 
expression as the more likely mechanism facilitating the rapid evolution of species' chemical 437 
profiles and for generating unique combinations of compounds that are divergent from neighbors 438 
within a community and from close relatives.  439 

 440 
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Regulatory changes facilitate divergence: 441 
We propose that changes in gene regulation is a parsimonious explanation for the pattern 442 

of phylogenetically dispersed expression of individual compounds. Although compounds spread 443 
throughout the phylogeny could have evolved independently by convergent evolution, the scale 444 
of how frequently they are apparently gained and lost is more consistent with the up–and down-445 
regulation of key enzymes via transcriptional regulation (Moore et al. 2014; Courtois et al. 2016).  446 

The role of regulation also applies at the compound class level where we find low 447 
phylogenetic signal and moderate trade-offs across biosynthetic pathways (Fig. 5, Fig S4). 448 
Consistent with our findings that Inga species invest in phytochemical diversity (Fig. 2) many 449 
species of Inga produce compounds from multiple biosynthetically distinct classes (Fig. S4). The 450 
ability for some species to produce compounds from up to five different compound classes 451 
coupled with the fact that one class did not completely exclude the production of other classes 452 
indicates that these trade-offs may not be driven by hard physiological constraints. For example, 453 
saponin production was negatively correlated with investment in flavan-3-ols, yet there were nine 454 
species that invested in both pathways simultaneously. The lack of strong physiological 455 
constraints likely facilitates the evolution of novel chemical profiles and divergence between 456 
closely related species.  457 

Changes in gene expression would allow an evolutionary fluidity not possible via 458 
changes to genes coding for biosynthetic enzymes (structural genes). Regulatory changes of 459 
existing biosynthetic genes permit distantly related species to express the same compound and 460 
closely related species to express divergent compounds (Courtois et al. 2016). For example, one 461 
sister species could make saponins and its close relative could make phenolics, presenting very 462 
different detoxification challenges for pests and pathogens. Thus, the evolutionary fluidity of 463 
defensive chemistry may be a major factor allowing long-lived trees to effectively persist in the 464 
arms race with insect herbivores and plant pathogens. 465 

Regulation as a model for chemical evolution would imply that species maintain a 466 
complete set of biosynthetic enzymes within their genome that are up-or down-regulated in 467 
different species and that “unused” genes would have to remain functional over evolutionary 468 
timescales. Preliminary results from two Inga genomes indicate that the core biosynthetic genes 469 
involved in flavonoid and saponin biosynthesis are in fact present in all species even when they 470 
do not produce these compound classes (pers. comm. C.A. Kidner, 2021). The maintenance of 471 
these supposedly unused enzymes may be required by deep homology and pleiotropy for core 472 
biosynthetic enzymes (Moore et al. 2014; Moghe and Last 2015). We offer several possibilities 473 
for how viable genes are maintained. First, many compounds, including pathway intermediates, 474 
do not accumulate to physiologically significant levels. However, because they are essential for 475 
the synthesis of downstream compounds, the enzymes responsible for them must be transcribed 476 
and maintained. This is the case for the phenylpropanoid compounds that link the shikimic acid 477 
pathway with the flavonoid pathway (Fig. S5). Second, it is possible that many compounds that 478 
are absent in leaves could be present in other tissues (van Dam et al. 2009; Schneider et al. 2021).  479 

 480 
“Lego-chemistry” as a mechanism for novel structures: 481 

While regulatory changes may explain novel combinations of metabolites, regulation 482 
alone cannot generate novel structures. The classic ‘escape and radiate’ model proposes gradual 483 
embellishments to a compound’s core structure. Instead, in Inga, we more commonly see the 484 
addition of larger structures, such as phenolic acids and carbohydrates, which are precursors and 485 
intermediates in secondary metabolism pathways (Fig. 5, Fig S4). The addition of these side 486 
groups in a combinatorial manner referred to as “Lego-chemistry,” has been shown to generate an 487 
impressively diverse array of larger structures from a small group of building blocks (Menzella et 488 
al. 2005; Sherman 2005).  489 

Lego-chemistry could be particularly important for the generation of novel structures in 490 
the phenolic biosynthetic pathway, which produces the most diverse class of compounds in Inga 491 
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(Fig. S5). Inga produces several subclasses of flavonoids that are further modified by the addition 492 
of divergent combinations of R-groups to key linkage sites on the basic scaffold molecule 493 
(flavonoid aglycones). For example, (epi)catechin (Fig. S5, comp 27), one of the most common 494 
compounds in Inga, is modified into at least four divergent structures (illustrated in Fig. S6), 495 
which upon polymerization lead to the generation of at least a dozen unique polymers (Fig. S5, 496 
comp 34).    497 

The idea that combinatory Lego-chemistry may generate structural diversity in plants is 498 
in line with the growing body of literature on the underlying genetic and biochemical mechanisms 499 
for the evolution of plant secondary metabolism (Schwab 2003; Gershenzon et al. 2012; Kreis 500 
and Munkert 2019; Monson et al. 2022). There is a wide consensus that secondary metabolites 501 
originate from a small group of precursor compounds derived from primary metabolism with 502 
gene duplication and subsequent neofunctionalization driving novel metabolites (Moore et al. 503 
2014; Weng 2014). Finally, because there are many more secondary metabolites than enzymes 504 
that produce them, it has been argued that a core set of enzymes with low substrate specificity is 505 
capable of producing a broad set of chemical structures (Schwab 2003; Gershenzon et al. 2012). 506 
This concept has proven to be important for generating novel structures via Lego-chemistry 507 
(Schwab 2003; Gershenzon et al. 2012; Kreis and Munkert 2019).  508 

Taken together, we hypothesize that the mode of chemical evolution for Inga is the 509 
combination of Lego-chemistry to generate novel structures along with changes in regulation of 510 
gene expression to generate unique chemical profiles in each species. We put forth this model of 511 
chemical evolution to integrate the patterns we observed in our study of Inga metabolomes, with 512 
their underlying genetic, biochemical and regulatory mechanisms. Future studies using multiomic 513 
approaches (Monson et al. 2022) that integrate, genomics, transcriptomics and metabolomics are 514 
needed to further test and refine this working model. 515 
 516 
Conclusions 517 
 In this paper, we integrate untargeted metabolomics and phylogenetic comparative 518 
methods to characterize the chemical profile of nearly 100 species of tropical trees from the genus 519 
Inga. We set out to address the fundamental questions of how phytochemical diversity evolves 520 
and what is the mode of chemical evolution. We show that each species maximizes 521 
phytochemical diversity by investing in structurally unrelated compounds. We also show that 522 
chemistry evolves rapidly, under a model of divergent adaptation. We find that sympatric sister 523 
species are more divergent than parapatric sister species implying an advantageous to be distinct 524 
from other species in a community. Finally, we integrate these patterns into a hypothesized model 525 
of chemical evolution in which novel structures are generated through “Lego-Chemistry” and 526 
divergent profiles arise through transcriptional regulation. Understanding the evolution of plant 527 
chemistry is of fundamental importance because chemistry underpins a plant’s ability to survive 528 
stressful abiotic conditions, as well as their ecological interaction such as interactions with pests, 529 
pathogens, and pollinators.   530 
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 768 
Figures and Tables 

 
Figure 1: Compound based molecular network: (A) Subset of molecular network (see Fig. S2. for 769 
the full network) containing all compounds observed across 98 study species. Nodes represent 770 
individual compounds identified in the metabolomics pipeline, and connections between 771 
compounds (edges) are based on the MS/MS cosine similarity score from GNPS 772 
(https://gnps.ucsd.edu). (B) Percent of compounds that were annotated using different methods - 773 
in silico fragmentation, machine learning, MS/MS library exact matches and adducts, and 774 
comparison to authentic standards on our UPLC-MS system based on mass-charge ratio (m/z) and 775 
retention time (RT). (C) Percent of compounds with annotations represented by each compound 776 
class. For B and C, total number of compounds are reported at top of bars. 777 
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Figure 2: Normalized phytochemical diversity in each Inga species: Bars represent individual 778 
Inga species ordered by increasing phytochemical diversity measured as the functional Hill 779 
number. Values represent the number of standard deviations above or below the mean calculated 780 
in the null model, with dashed red lines indicating 2 standard deviations above and below the null 781 
mean. Values less than zero represent species that are less chemically diverse than a random draw 782 
(under-dispersed in the MS/MS network) and values above zero represent species that are more 783 
diverse (over-dispersed in the MS/MS network). Hill numbers are calculated with Q=0. 784 
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Figure 3: Comparison of entire chemical profiles between Inga Species: A) Boxplot comparison 785 
of chemical similarity scores for Inga within a species, between sister species, and between all 786 
other species. Comparisons between and within sites are indicated by red and blue boxes, 787 
respectively. Significantly different groups are denoted by A, B, C, D, and E. The solid red line 788 
indicates the mean chemical similarity score observed in the null model which simulates the 789 
expected chemical similarity between two randomly assembled chemical profiles. The dashed red 790 
lines represent 2 standard deviations above and below the null mean.  791 
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 792 
Figure 4. Expression patterns of individual compounds mapped onto the Inga phylogeny: (A) 793 
Phylogenetic signal of 500 randomly sampled compounds ordered from most to least 794 
phylogenetically conserved using the D statistic. For visualization purposes we display 500 795 
randomly chosen compounds. Red bars indicate compounds with significant phylogenetic signal 796 
(p <0.05). (B) Heat map demonstrating expression of individual compounds on the  phylogeny. 797 
Red (significant phylogenetic signal) and grey (non-significant) bars indicate where a compound 798 
is present in a given species. (C) Histogram for the compound lability index for all compounds 799 
present in > 2 species. 800 
  801 



 
 

26 
 

 802 

 803 
Fig. 5 Expression of defensive compound classes mapped on the Inga phylogeny: Total number 804 

of compound classes expressed per species, followed by expression per species of distinct 805 

classes including quinic acid gallates, tyrosine and related depsides, flavones, flavonoids, flavan-806 

3-ols, and saponins. The expression of individual compound classes is measured as a 807 

percentage of the total MS-level-1 ion current (TIC; metric of abundance) constituted by each 808 

class. The phylogenetic signal of each compound class and its significance are represented by 809 

Blomberg's K and corresponding p-values. 810 
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Site Country Latitude Longitude Annual Rainfall 
(mm) 

Inga 
Species (n) 

Barro Colorado Island Panama 9°S 80°W 2623 14 

Nouragues French 
Guiana 4°N 53°W 3000 46 

Tiputini 
(Yasuni National 

Park) 
Ecuador 0°N 75°W 3200 41 

Los Amigos 
(Madre de Dios) Peru 13°S 70°W 2648 39 

Manaus Brazil 2°S 60°W 2100 29 
 

Table S1 Site and Sampling information for all 98 study species 

 



 

 
 

Fig. S1 A) Defense investment traits mapped on to the Inga phylogeny . Number of unique 

compounds per species, percent of leaf dry weight invested in secondary metabolism per species, 

and the phytochemical diversity (measured as functional Hill numbers, q = 2) of each species 

profile are represented by points. Horizontal bars indicate one standard deviation. Dotted red 

lines represent mean trait values across all species and the blue line represents the mean value for 



 

phytochemical diversity estimated in the null model. B) Defense investment trait correlations: (1) 

Phytochemical diversity vs. percent of leaf dry weight invested in secondary metabolism, (2) 

phytochemical diversity vs. number of compounds, and (3)  percent of leaf dry weight invested 

in secondary metabolism  vs. number of compounds. Points represent individual Inga species; 

red lines represent the phylogenetic linear model estimate of best fit (package: phylolm1). 

Pearson's correlation (ρ), and R-squared are reported, and significance of model fit is represented 

by asterisks (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***) 

 

 

Fig. S2 Compound based molecular network containing all compounds observed in 98 study 
species. Nodes represent individual compounds identified in the metabolomics pipeline, and 
connections between compounds (edges) are based on MS/MS cosine similarity score from 
GNPS (https://gnps.ucsd.edu).  Node color represents compound annotations into major 
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compound classes. Unconnected nodes at the bottom of the network are spectrally unique 
compounds, that did not match with any other compound in the network, a common feature of 
ms/ms based metabolomics studies.  
 

 

 

Fig. S3 Correlation between chemical similarity and phylogenetic distance (My) for all 

interspecific comparisons. The solid red line represents the mean chemical similarity score 

observed in the null model which simulates the expected chemical similarity between two 

randomly assembled chemical profiles. The dashed red lines represent 2 standard deviations 

above and below the null mean. 
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Fig. S4 Structural Equation Model (SEM) showing correlation between investment in major defense 

compound classes produced by Inga. Significant (p < 0.05) relationships between compound classes 

indicated by a correlation value listed next to arrows. Solid black arrows represent direct biosynthetic 

links, regardless of significance of the correlation in the SEM. Dashed grey arrows represent significant 

indirect relationships between compound classes.  
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Fig. S5 Biosynthetic context of phenolic compounds in Inga: (A) Structures and substructures of 

compounds observed in a survey of 98 focal species and their positions in the biosynthetic 

pathways that produce them. Compounds that accumulate to significant levels are red and 

bold; low abundance are black and non-accumulating intermediates are light grey. Wavy bonds 

indicate variable stereochemistry. Compound names for each compound are listed in Table S3.  

Marvin was used for drawing, displaying and characterizing chemical structures, substructures 

and reactions, Marvin 20.20.0, ChemAxon (https://www.chemaxon.com)  

 

 

  



 

 
 

 

Fig. S6 Illustration of Lego-chemistry concept based on annotation of monomeric and polymeric 

Flavan-3-ol compounds observed in Inga based on NMR structure elucidation and MS/MS 

annotation.  Red substructures represent commonly observed R-Groups, which are added in a 

combinatorial manner to generate a variety of compounds.   
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Table S2  Maximum-likelihood estimates for different evolutionary models of trait evolution. For 
each trait we fit three models of trait evolution: A random walk model characterized by 
Brownian Motion (BM), The Ornstein-Uhlenbeck (OU) model where a trait evolves under BM 
with a constraining central tendency, and a divergent adaptation (DA) model where trait values 
the OU model but different lineages interact such that lineage’s mean values diverge. We 
selected the best model based on AIC; significance of model parameters was evaluated by 
likelihood ratio (LR) tests to determine if a more complex model was significant. Significance 
indicated by asterisks (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).  
 

Trait Phyl. Signal Evol. 
Model MLE ∆ 

AIC
Akaike 
Weight P Interpretation

 Chemical 

(Chemotype)

No Phyl. Signal
Mantel

R = -0.03,
 p = 0.68

DA
σ2 =14.01,  

α = 0.24  
psi = 0.83

0 1.0 ***

Trait lacks phylogenetic 
signal and is evolving by 

divergent adapation.
OU σ2 =0.13, 

α = 0.13  17823
0

***

BM σ2 =0.02 17989 0

Number of 
Compounds

Phyl. Signal
K= 0.56,
 P= 0.04

BM σ2 =352.9 0 0.51

Trait shows moderate 
phylogenetic signal and is 
evolving under Brownian 

motion

OU
σ2 =372.43,  

α = 0.004  0.71 0.36 ns

DA
σ2 = 372.43, 

α = 0.004, 
psi = 3.054

2.72 0.13 ns

Chemical 
Investment 

(% Dry Weight)
 

Marg. Signif.  
Phyl Signal

K= 0.51,
 P= 0.06

OU σ2 =5.02, α 
= 0.03 0 0.73 ***

Trait shows moderate 
phylogenetic signal and 
is evolving towards an 

optimal value. 

DA
σ2 =5.02, α 
= 0.03, psi = 

0.00001
2 0.26 ns

BM σ2 = 3.19 66 0

Phytochemical 
Diversity

No Phyl. Signal
K= 0.36,
 P= 0.58

OU σ2 =16.1, α 
= 0.12 0 0.72 ***

Trait lacks phylogenetic 
signal and is evolving to-

ward an optimal value.
DA

σ2 =16.21,  
α = 0.12  

psi = 1.33
1.9 0.27 ns

BM 372σ2 =4.34 0
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