276 research outputs found
Loss of DJ-1 Does Not Affect Mitochondrial Respiration but Increases ROS Production and Mitochondrial Permeability Transition Pore Opening
Background: Loss of function mutations in the DJ-1 gene have been linked to recessively inherited forms of Parkinsonism. Mitochondrial dysfunction and increased oxidative stress are thought to be key events in the pathogenesis of Parkinsonâs disease. Although it has been reported that DJ-1 serves as scavenger for reactive oxidative species (ROS) by oxidation on its cysteine residues, how loss of DJ-1 affects mitochondrial function is less clear. Methodology/Principal Findings: Using primary mouse embryonic fibroblasts (MEFs) or brains from DJ-1â/â mice, we found that loss of DJ-1 does not affect mitochondrial respiration. Specifically, endogenous respiratory activity as well as basal and maximal respiration are normal in intact DJ-1â/â MEFs, and substrate-specific state 3 and state 4 mitochondrial respiration are also unaffected in permeabilized DJ-1â/â MEFs and in isolated mitochondria from the cerebral cortex of DJ-1â/â mice at 3 months or 2 years of age. Expression levels and activities of all individual complexes composing the electron transport system are unchanged, but ATP production is reduced in DJ-1â/â MEFs. Mitochondrial transmembrane potential is decreased in the absence of DJ-1. Furthermore, mitochondrial permeability transition pore opening is increased, whereas mitochondrial calcium levels are unchanged in DJ-1â/â cells. Consistent with earlier reports, production of reactive oxygen species (ROS) is increased, though levels of antioxidative enzymes are unaltered. Interestingly, the decreased mitochondrial transmembrane potential and the increased mitochondrial permeability transition pore opening in DJ-1â/â MEFs can be restored by antioxidant treatment, whereas oxidative stress inducers have the opposite effects on mitochondrial transmembrane potential and mitochondrial permeability transition pore opening. Conclusions/Significance: Our study shows that loss of DJ-1 does not affect mitochondrial respiration or mitochondrial calcium levels but increases ROS production, leading to elevated mitochondrial permeability transition pore opening and reduced mitochondrial transmembrane potential
Age-related changes in tricuspid inflow: comparison between phase contrast MR imaging and Doppler echocardiography
International audiencen.
New approaches to the restoration of shallow marginal peatlands
ArticleGlobally, the historic and recent exploitation of peatlands through management practices such as agricultural reclamation, peat harvesting or forestry, have caused extensive damage to these ecosystems. Their value is now increasingly recognised, and restoration and rehabilitation programmes are underway to improve some of the ecosystem services provided by peatlands: blocking drainage ditches in deep peat has been shown to improve the storage of water, decrease carbon losses in the long-term, and improve biodiversity. However, whilst the restoration process has benefitted from experience and technical advice gained from restoration of deep peatlands, shallow peatlands have received less attention in the literature, despite being extensive in both uplands and lowlands. Using the experience gained from the restoration of the shallow peatlands of Exmoor National Park (UK), and two test catchments in particular, this paper provides technical guidance which can be applied to the restoration of other shallow peatlands worldwide. Experience showed that integrating knowledge of the historical environment at the planning stage of restoration was essential, as it enabled the effective mitigation of any threat to archaeological features and sites. The use of bales, commonly employed in other upland ecosystems, was found to be problematic. Instead, âleaky damsâ or wood and peat combination dams were used, which are both more efficient at reducing and diverting the flow, and longer lasting than bale dams. Finally, an average restoration cost (ÂŁ306 ha-1) for Exmoor, below the median national value across the whole of the UK, demonstrates the cost-effectiveness of these techniques. However, local differences in peat depth and ditch characteristics (i.e. length, depth and width) between sites affect both the feasibility and the cost of restoration. Overall, the restoration of shallow peatlands is shown to be technically viable; this paper provides a template for such process over analogous landscapes.South West WaterUniversity of ExeterTechnology Strategy BoardNERCKnowledge Transfer Partnership programm
A CD31-derived peptide prevents angiotensin II-induced atherosclerosis progression and aneurysm formation.
International audienceAIMS: The loss of the inhibitory receptor CD31 on peripheral T lymphocytes is associated with the incidence of atherosclerotic complications such as abdominal aortic aneurysms (AAA) in patients and plaque thrombosis in mice. However, we have recently discovered that a small fragment of extracellular CD31 remains expressed on the surface of the apparently 'CD31-negative' T-cells and that it is possible to restore the CD31-mediated T-cell inhibition in vivo by using a synthetic CD31-derived peptide. Here, we wanted to evaluate the therapeutic potential of the peptide in an experimental model of accelerated atherosclerosis and AAA formation. METHODS AND RESULTS: The effect of the murine CD31-derived peptide (aa 551-574, 1.5 mg/kg/day, sc) was evaluated on the extent of atherosclerotic plaques and the incidence of AAA in 28-week-old apolipoprotein E knockout mice (male, n â„ 8/group) submitted to chronic angiotensin II infusion. The therapeutic mechanisms of the peptide were assessed by evaluating its effect on immune cell functions in vivo and in vitro. The prevalence of angiotensin II-induced AAA correlated with the loss of extracellular CD31 on T-cells. CD31 peptide treatment reduced both aneurysm formation and plaque size (P < 0.05 vs. control). Protection was associated with reduced perivascular leucocyte infiltration and T-cell activation in vivo. Functional in vitro studies showed that the peptide is able to suppress both T-cell and macrophage activation. CONCLUSION: CD31 peptides could represent a new class of drugs intended to prevent the inflammatory cell processes, such as those underlying progression of atherosclerosis and development of AAA
Thrombocytopenia limits the feasibility of salvage lomustine chemotherapy in recurrent glioblastoma: a secondary analysis of EORTC 26101
BACKGROUND
Thrombocytopenia represents the main cause of stopping alkylating chemotherapy for toxicity. Here, we explored the incidence, and the consequences for treatment exposure and survival, of thrombocytopenia induced by lomustine in recurrent glioblastoma.
METHODS
We performed a retrospective analysis of the associations of thrombocytopenia with treatment delivery and outcome in EORTC 26101, a randomised trial designed to define the role of lomustine versus bevacizumab versus their combination in recurrent glioblastoma.
RESULTS
A total of 225 patients were treated with lomustine alone (median 1 cycle) (group 1) and 283 patients were treated with lomustine plus bevacizumab (median 3 lomustine cycles) (group 2). Among cycle delays and dose reductions of lomustine for toxicity, thrombocytopenia was the leading cause. Among 129 patients (57%) of group 1 and 187 patients (66%) of group 2 experiencing at least one episode of thrombocytopenia, 36 patients (16%) in group 1 and 93 (33%) in group 2 had their treatment modified because of thrombocytopenia. Lomustine was discontinued for thrombocytopenia in 16 patients (7.1%) in group 1 and in 38 patients (13.4%) in group 2. On adjusted analysis accounting for major prognostic factors, dose modification induced by thrombocytopenia was associated with inferior progression-free survival in patients with MGMT promoter-methylated tumours in groups 1 and 2. This effect was noted for overall survival, too, but only for group 2 patients.
CONCLUSION
Drug-induced thrombocytopenia is a major limitation to adequate exposure to lomustine chemotherapy in recurrent glioblastoma. Mitigating thrombocytopenia to enhance lomustine exposure might improve outcome in patients with MGMT promoter-methylated tumours
Mechanical tuning of the evaporation rate of liquid on crossed fibers
We investigate experimentally the drying of a small volume of perfectly
wetting liquid on two crossed fibers. We characterize the drying dynamics for
the three liquid morphologies that are encountered in this geometry: drop,
column and a mixed morphology, in which a drop and a column coexist. For each
morphology, we rationalize our findings with theoretical models that capture
the drying kinetics. We find that the evaporation rate depends significantly on
the liquid morphology and that the drying of liquid column is faster than the
evaporation of the drop and the mixed morphology for a given liquid volume.
Finally, we illustrate that shearing a network of fibers reduces the angle
between them, changes the morphology towards the column state, and so enhances
the drying rate of a volatile liquid deposited on it
Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline
Automated segmenting and labeling of individual brain anatomical regions, in MRI are challenging, due to the issue of individual structural variability. Although atlas-based segmentation has shown its potential for both tissue and structure segmentation, due to the inherent natural variability as well as disease-related changes in MR appearance, a single atlas image is often inappropriate to represent the full population of datasets processed in a given neuroimaging study. As an alternative for the case of single atlas segmentation, the use of multiple atlases alongside label fusion techniques has been introduced using a set of individual âatlasesâ that encompasses the expected variability in the studied population. In our study, we proposed a multi-atlas segmentation scheme with a novel graph-based atlas selection technique. We first paired and co-registered all atlases and the subject MR scans. A directed graph with edge weights based on intensity and shape similarity between all MR scans is then computed. The set of neighboring templates is selected via clustering of the graph. Finally, weighted majority voting is employed to create the final segmentation over the selected atlases. This multi-atlas segmentation scheme is used to extend a single-atlas-based segmentation toolkit entitled AutoSeg, which is an open-source, extensible C++ based software pipeline employing BatchMake for its pipeline scripting, developed at the Neuro Image Research and Analysis Laboratories of the University of North Carolina at Chapel Hill. AutoSeg performs N4 intensity inhomogeneity correction, rigid registration to a common template space, automated brain tissue classification based skull-stripping, and the multi-atlas segmentation. The multi-atlas-based AutoSeg has been evaluated on subcortical structure segmentation with a testing dataset of 20 adult brain MRI scans and 15 atlas MRI scans. The AutoSeg achieved mean Dice coefficients of 81.73% for the subcortical structures
Identification of Pathway-Biased and Deleterious Melatonin Receptor Mutants in Autism Spectrum Disorders and in the General Population
Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration of the melatonin pathway has been reported in circadian disorders, diabetes and autism spectrum disorders (ASD). However, very little is known about the genetic variability of melatonin receptors in humans. Here, we sequenced the melatonin receptor MTNR1A and MTNR1B, genes coding for MT1 and MT2 receptors, respectively, in a large panel of 941 individuals including 295 patients with ASD, 362 controls and 284 individuals from different ethnic backgrounds. We also sequenced GPR50, coding for the orphan melatonin-related receptor GPR50 in patients and controls. We identified six non-synonymous mutations for MTNR1A and ten for MTNR1B. The majority of these variations altered receptor function. Particularly interesting mutants are MT1-I49N, which is devoid of any melatonin binding and cell surface expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface expression. Of note, several mutants possessed pathway-selective signaling properties, some preferentially inhibiting the adenylyl cyclase pathway, others preferentially activating the MAPK pathway. The prevalence of these deleterious mutations in cases and controls indicates that they do not represent major risk factor for ASD (MTNR1A case 3.6% vs controls 4.4%; MTNR1B case 4.7% vs 3% controls). Concerning GPR50, we detected a significant association between ASD and two variations, Î502â505 and T532A, in affected males, but it did not hold up after Bonferonni correction for multiple testing. Our results represent the first functional ascertainment of melatonin receptors in humans and constitute a basis for future structure-function studies and for interpreting genetic data on the melatonin pathway in patients
Life expectancy and disease burden in the Nordic countries : results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017
Background The Nordic countries have commonalities in gender equality, economy, welfare, and health care, but differ in culture and lifestyle, which might create country-wise health differences. This study compared life expectancy, disease burden, and risk factors in the Nordic region. Methods Life expectancy in years and age-standardised rates of overall, cause-specific, and risk factor-specific estimates of disability-adjusted life-years (DALYs) were analysed in the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017. Data were extracted for Denmark, Finland, Iceland, Norway, and Sweden (ie, the Nordic countries), and Greenland, an autonomous area of Denmark. Estimates were compared with global, high-income region, and Nordic regional estimates, including Greenland. Findings All Nordic countries exceeded the global life expectancy; in 2017, the highest life expectancy was in Iceland among females (85.9 years [95% uncertainty interval [UI] 85.5-86.4] vs 75.6 years [75.3-75.9] globally) and Sweden among males (80.8 years [80.2-81.4] vs 70.5 years [70.1-70.8] globally). Females (82.7 years [81.9-83.4]) and males (78.8 years [78.1-79.5]) in Denmark and males in Finland (78.6 years [77.8-79.2]) had lower life expectancy than in the other Nordic countries. The lowest life expectancy in the Nordic region was in Greenland (females 77.2 years [76.2-78.0], males 70.8 years [70.3-71.4]). Overall disease burden was lower in the Nordic countries than globally, with the lowest age-standardised DALY rates among Swedish males (18 555.7 DALYs [95% UI 15 968.6-21 426.8] per 100 000 population vs 35 834.3 DALYs [33 218.2-38 740.7] globally) and Icelandic females (16 074.1 DALYs [13 216.4-19 240.8] vs 29 934.6 DALYs [26 981.9-33 211.2] globally). Greenland had substantially higher DALY rates (26 666.6 DALYs [23 478.4-30 218.8] among females, 33 101.3 DALYs [30 182.3-36 218.6] among males) than the Nordic countries. Country variation was primarily due to differences in causes that largely contributed to DALYs through mortality, such as ischaemic heart disease. These causes dominated male disease burden, whereas non-fatal causes such as low back pain were important for female disease burden. Smoking and metabolic risk factors were high-ranking risk factors across all countries. DALYs attributable to alcohol use and smoking were particularly high among the Danes, as was alcohol use among Finnish males. Interpretation Risk factor differences might drive differences in life expectancy and disease burden that merit attention also in high-income settings such as the Nordic countries. Special attention should be given to the high disease burden in Greenland. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd.Peer reviewe
- âŠ