6 research outputs found

    Lineage tracing reveals evidence of a popliteal lymphatic muscle progenitor cell that is distinct from skeletal and vascular muscle progenitors

    No full text
    Abstract Loss of popliteal lymphatic vessel (PLV) contractions, which is associated with damage to lymphatic muscle cells (LMCs), is a biomarker of disease progression in mice with inflammatory arthritis. Currently, the nature of LMC progenitors has yet to be formally described. Thus, we aimed to characterize the progenitors of PLV-LMCs during murine development, towards rational therapies that target their proliferation, recruitment, and differentiation onto PLVs. Since LMCs have been described as a hybrid phenotype of striated and vascular smooth muscle cells (VSMCs), we performed lineage tracing studies in mice to further clarify this enigma by investigating LMC progenitor contribution to PLVs in neonatal mice. PLVs from Cre-tdTomato reporter mice specific for progenitors of skeletal myocytes (Pax7+ and MyoD+) and VSMCs (Prrx1+ and NG2+) were analyzed via whole mount immunofluorescent microscopy. The results showed that PLV-LMCs do not derive from skeletal muscle progenitors. Rather, PLV-LMCs originate from Pax7−/MyoD−/Prrx1+/NG2+ progenitors similar to VSMCs prior to postnatal day 10 (P10), and from a previously unknown Pax7−/MyoD−/Prrx1+/NG2− muscle progenitor pathway during development after P10. Future studies of these LMC progenitors during maintenance and repair of PLVs, along with their function in other lymphatic beds, are warranted

    Identification of Penicillin Binding Protein 4 (PBP4) as a critical factor for Staphylococcus aureus bone invasion during osteomyelitis in mice.

    No full text
    Staphylococcus aureus infection of bone is challenging to treat because it colonizes the osteocyte lacuno-canalicular network (OLCN) of cortical bone. To elucidate factors involved in OLCN invasion and identify novel drug targets, we completed a hypothesis-driven screen of 24 S. aureus transposon insertion mutant strains for their ability to propagate through 0.5 μm-sized pores in the Microfluidic Silicon Membrane Canalicular Arrays (μSiM-CA), developed to model S. aureus invasion of the OLCN. This screen identified the uncanonical S. aureus transpeptidase, penicillin binding protein 4 (PBP4), as a necessary gene for S. aureus deformation and propagation through nanopores. In vivo studies revealed that Δpbp4 infected tibiae treated with vancomycin showed a significant 12-fold reduction in bacterial load compared to WT infected tibiae treated with vancomycin (p<0.05). Additionally, Δpbp4 infected tibiae displayed a remarkable decrease in pathogenic bone-loss at the implant site with and without vancomycin therapy. Most importantly, Δpbp4 S. aureus failed to invade and colonize the OLCN despite high bacterial loads on the implant and in adjacent tissues. Together, these results demonstrate that PBP4 is required for S. aureus colonization of the OLCN and suggest that inhibitors may be synergistic with standard of care antibiotics ineffective against bacteria within the OLCN

    Iron-export ferroxidase activity of β-amyloid protein precursor is inhibited by zinc in Alzheimer\u27s disease

    Get PDF
    SummaryAlzheimer's Disease (AD) is complicated by pro-oxidant intraneuronal Fe2+ elevation as well as extracellular Zn2+ accumulation within amyloid plaque. We found that the AD β-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn2+. Like ceruloplasmin, APP catalytically oxidizes Fe2+, loads Fe3+ into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue. Ablation of APP in HEK293T cells and primary neurons induces marked iron retention, whereas increasing APP695 promotes iron export. Unlike normal mice, APP−/− mice are vulnerable to dietary iron exposure, which causes Fe2+ accumulation and oxidative stress in cortical neurons. Paralleling iron accumulation, APP ferroxidase activity in AD postmortem neocortex is inhibited by endogenous Zn2+, which we demonstrate can originate from Zn2+-laden amyloid aggregates and correlates with Aβ burden. Abnormal exchange of cortical zinc may link amyloid pathology with neuronal iron accumulation in AD

    Paradoxical Condensation of Copper with Elevated β-Amyloid in Lipid Rafts under Cellular Copper Deficiency Conditions: IMPLICATIONS FOR ALZHEIMER DISEASE*

    No full text
    Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), β-amyloid peptide (Aβ) aggregation, and amyloid formation. Aβ·copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides. The site and mechanism of this abnormality is not known. Growing evidence suggests that amyloidogenic processing of the β-amyloid precursor protein (APP) occurs in lipid rafts, membrane microdomains enriched in cholesterol. β- and γ-secretases, and Aβ have been identified in lipid rafts in cultured cells, human and rodent brains, but the role of copper in lipid raft amyloidogenic processing is presently unknown. In this study, we found that copper modulates flotillin-2 association with cholesterol-rich lipid raft domains, and consequently Aβ synthesis is attenuated via copper-mediated inhibition of APP endocytosis. We also found that total cellular copper is associated inversely with lipid raft copper levels, so that under intracellular copper deficiency conditions, Aβ·copper complexes are more likely to form. This explains the paradoxical hypermetallation of Aβ with copper under tissue copper deficiency conditions in AD
    corecore