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SUMMARY

Alzheimer’s Disease (AD) is complicated by pro-
oxidant intraneuronal Fe2+ elevation as well as extra-
cellular Zn2+ accumulation within amyloid plaque.
We found that the AD b-amyloid protein precursor
(APP) possesses ferroxidase activity mediated by
a conserved H-ferritin-like active site, which is
inhibited specifically by Zn2+. Like ceruloplasmin,
APP catalytically oxidizes Fe2+, loads Fe3+ into trans-
ferrin, and has a major interaction with ferroportin
in HEK293T cells (that lack ceruloplasmin) and in
human cortical tissue. Ablation of APP in HEK293T
cells and primary neurons induces marked iron
retention, whereas increasing APP695 promotes
iron export. Unlike normal mice, APP�/� mice are
vulnerable to dietary iron exposure, which causes
Fe2+ accumulation and oxidative stress in cortical
neurons. Paralleling iron accumulation, APP ferroxi-
dase activity in AD postmortem neocortex is
inhibited by endogenous Zn2+, which we demon-
strate can originate from Zn2+-laden amyloid aggre-
gates and correlates with Ab burden. Abnormal
exchange of cortical zinc may link amyloid pathology
with neuronal iron accumulation in AD.

INTRODUCTION

In Alzheimer’s disease (AD), Zn2+ collects with b-amyloid (Ab) in

hallmark extracellular plaques (Adlard et al., 2008; Cherny et al.,
1999; Lee et al., 2002; Lovell et al., 1998; Miller et al., 2006; Suh

et al., 2000), adjacent to neocortical neurons filled with pro-

oxidant Fe2+ (Bartzokis et al., 1994a, 1994b; Bartzokis and Tish-

ler, 2000; Honda et al., 2005). The elevated neuronal iron exacer-

bates the pervasive oxidative damage that characterizes AD and

may foster multiple pathologies including tau-hyperphosphory-

lation and neurofibrillary tangle formation (Honda et al., 2005;

Smith et al., 1997; Yamamoto et al., 2002), but the cause of

this neuronal iron elevation is unknown.

Ab is derived from a broadly expressed type I transmembrane

protein precursor (APP) of uncertain function and constitutively

cleaved into various fragments. The 50 untranslated region

(UTR) of APP mRNA possesses a functional iron-responsive

element (IRE) stem loop with sequence homology to the IREs

for ferritin and transferrin receptor (TFR) mRNA (Rogers et al.,

2002). APP translation is thus responsive to cytoplasmic free

iron levels (the labile iron pool, LIP), which also govern the

binding of iron regulatory proteins (IRPs) to ferritin and TFR

mRNA in a canonical cis-trans iron regulatory system (Klausner

et al., 1993). When cellular iron levels are high, translation of

APP and the iron-storage protein ferritin is increased (Rogers

et al., 2002), whereas RNA for the iron importer TFR is degraded.

Ferroxidases prevent oxidative stress caused by Fenton and

Haber-Weiss chemistry by oxidizing Fe2+ to Fe3+. Losses of

ferroxidase activities cause pathological Fe2+ accumulation

and neurodegenerative diseases, such as aceruloplasminemia

where mutation of the multicopper ferroxidase ceruloplasmin

(CP) leads to glial iron accumulation and dementia (Chinnery

et al., 2007; Harris et al., 1995; Mantovan et al., 2006; Patel

et al., 2002). Iron-export ferroxidases CP and hephaestin interact

with ferroportin and facilitate the removal (e.g., by transferrin) of

cytoplasmic iron translocated to the surface by ferroportin
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Figure 1. Characterization of APP695a Fer-

roxidase Activity

(A) Schematic of APP domains. The APP770 iso-

form is shown, APP751 lacks the OX-2 domain,

and APP695 lacks both OX-2 and Kunitz protease

inhibitor (KPI) domains. CuBD = copper-binding

domain, ZnBD = zinc-binding domain.

(B) Sequence homologies for the REXXE motif.

A sole match for the REXXE motif (in bold) of

H-ferritin is at residues 411–415 of human

APP770, commencing five residues downstream

from the RERMS neurotrophic motif (Ninomiya

et al., 1993). This is an evolutionarily conserved

motif not present in either human APLP1 or

APLP2. A consensus alignment of three glutamate

residues and the ferroxidase active site of

H-ferritin is underlined. The first glutamate of the

REWEE motif of APP could be aligned with

Glu62 of H-ferritin (in red), which is part of the fer-

roxidase catalytic site (Lawson et al., 1989; Tous-

saint et al., 2007), although this forces the REXXE

motifs of the proteins two residues out of register.

(C) An overlay of the backbone atoms (N, Ca, C) of

residues 52–67 of the known H-ferritin active site

(Lawson et al., 1991) (PDB accession number

1FHA) with the putative ferroxidase site within resi-

dues 402-417 of APP695 (Wang and Ha, 2004)

(1rw6) (root-mean-square deviation [rmsd] 0.4 Å).

The Fe coordinating residues of H-ferritin, E62

and H65 (shown in red), overlap with the corre-

sponding residues E412 and E415 that make up

the putative ferroxidase site of APP (shown in

green), based upon the sequence alignment in (B).

(D and E) Kinetic values of Fe3+ formation from

Fe2+ monitored by incorporation into transferrin,

indicated within the graphs, were calculated for

each protein (200 nM) incubatedwith various concentrations of Fe2+ at pH 7.2 to reflect the normal pH of brain interstitial space, where apo-transferrin is abundant

(Visser et al., 2004). CP values are in close agreement with the original reports (Osaki, 1966).

Data are means ± standard error of the mean (SEM), n = 3 replicates, typical of three experiments. See also Figure S1.
(De Domenico et al., 2007). Their expression is cell specific (e.g.,

CP in glia, hephaestin in gut epithelia), but an iron-export ferrox-

idase for neocortical neurons is unknown (Klomp et al., 1996). CP

is expressed in GPI-anchored and soluble forms (De Domenico

et al., 2007; Jeong and David, 2003; Patel et al., 2002). APP

similarly is expressed in transmembrane and secreted forms.

We explored whether APP is a ferroxidase and in turn has

a role in neuronal iron export—an activity consistent with APP

translation being responsive to iron levels. We also tested

whether, in AD, APP ferroxidase activity is altered in a manner

linked to the accumulation of its Ab derivative in plaque

pathology.

RESULTS

APP695 Possesses Ferroxidase Activity Similar
to Ceruloplasmin
We noted that APP possesses a REXXE ferroxidase consensus

motif (Gutierrez et al., 1997) as found in the ferroxidase active

site of H-ferritin (Figures 1A and 1B). This evolutionarily con-

served motif is not present in paralogs APLP1 or 2 (Figure 1B).

There is good structural homology between the known 3D struc-

tures of H-ferritin (Lawson et al., 1991) and the REXXE region
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of the E2 domain of APP (Wang and Ha, 2004), with low root-

mean-square deviation (0.4 Å) when overlaying backbone atoms

of the a-helical H-ferritin catalytic site (residues 52–67) with the

corresponding backbone atoms of APP (residues 402–417)

(Figure 1C). The homology extends to the side chains consti-

tuting the Fe coordinating residues of H-ferritin, E62, and H65,

which overlap with potential Fe coordinating residues E412

and E415 of APP695 (Figure 1C).

Recombinant soluble APP695a, representing the predominant

neuronal APP species (Rohan de Silva et al., 1997), possessed

robust ferroxidase activity (Vmax = 228.6 mM Fe3+/min/mM APP;

Km = 48.6 mM; Figure 1D), like CP (Figure 1E), as measured by

the rate of Fe3+ incorporation into transferrin. Therefore, APP is

a more active ferroxidase than ferritin (Vmax = 2.21 mM Fe3+/

min/mM ferritin, Km = 200 mM) (Bakker and Boyer, 1986).

APP695a ferroxidase activity was maintained across a pH range

5.0–9.0 (Figure S1A available online). APLP2 was inactive

(Figure 2A), like the negative control albumin (Figure S1B),

consistent with the absence of the REXXE motif (Figure 1B).

CP ferroxidase activity is dependent on copper and inhibited

by NaN3 (Osaki, 1966). Neither NaN3 (Figure 2A) nor Cu2+ (2:1

Cu:APP, not shown) altered APP695a activity, indicating that

APP695a ferroxidase chemistry is like H-ferritin (Bakker and



Figure 2. Domains Important to APP Fer-

roxidase Activity and Its inhibition by Zn2+

(A) Activities of the E2 fragment of APP ± GFD-

containing fragments compared to APP695a,

FD1(E14N)-APPa, and APLP2a in HBS (pH 7.2).

Effects of ferroxidase inhibitors NaN3 (10 mM) for

CP and Zn2+ (10 mM) for H-ferritin are shown.

FD1(E14N)-APP695a has themutation in the REXXE

motif shown in Figures 2B and 2C.

(B) Sequences of FD1 and derived peptides used

to map the active site of APP695a. The REXXE

motif is in bold, and the substitution site in red.

The last three peptides have substitutions in the

putative active site that represent the homologous

sequences of H-ferritin, APLP1, and APLP2,

respectively.

(C) Ferroxidase activities of a 22 residue peptide

containing the REXXE consensus motif of APP

(‘‘FD1,’’ see B) and the same peptide where the

REWEE sequence is substituted with REWEN

(‘‘E14N,’’ see B).

(D) Ferroxidase activity of FD1 is specific to the

REXXE motif. Activity is retained upon deleting

the first nine residues (containing the RERMS

motif), and when the H-ferritin REXXE consensus

motif is substituted into the peptide (WE12/

13HA). Activity is eliminated by substitution of

the APLP1 (EE13/14AM) and APLP2 (R10K)

sequences, which disrupt the REXXE consensus

sequence. All peptides were 0.5 mM.

(E) Ferroxidase activity of the E2 domain of APP

(0.5 mM) is potentiated by the E1 domain in

a concentration-dependent manner up to a 1:1

stoichiometry.

Values are means ± SEM, n = 3 replicates, typical

of three experiments. See also Figure S1.
Boyer, 1986) and not like CP. H-ferritin ferroxidase activity is

inhibited by Zn2+ (Bakker and Boyer, 1986), and indeed Zn2+ in-

hibited the activities of both APP695a and the E2 domain of APP

(Figure 2A). Inhibition was specific for Zn2+ among physiological

divalent metal ions, given that Ca2+ (2 mM), Mg2+ (0.5 mM), Cu2+

(20 mM), Mn2+ (10 mM), Ni2+ (20 mM), and Co2+ (20 mM), as

chloride salts, did not inhibit APP695a ferroxidase activity

(not shown). The activities of the main isoforms, APP695a,

APP770a, and APP751a, were identical (Figure S1C).

A 22 residue synthetic peptide within the E2 domain (FD1)

(Figure 1A and Figure 2B), containing the putative active site

of APP, possessed ferroxidase activity that was �40% that of

APP695a (Figure 2C).Mutational analysis of APP695a (Figure 2A)

and FD1 (Figures 2B–2D) confirmed that disruption of the REXXE

motif, by altering a single conserved amino acid (REWEN,

‘‘E14N’’ in Figures 2B and 2C), or substituting the homologous

pentapeptide regions of APLP1 (REWAM, ‘‘EE13/14AM’’ in

Figure 2D) or APLP2 (KEWEE, ‘‘R10K’’ in Figure 2D), abolished

activity. Substitution with the homologous H-ferritin sequence

(REHAE, ‘‘WE12/13HA’’ in Figure 2B), which does not disrupt

the consensus motif, retained activity (Figure 2D).

Like FD1 peptide (Figure 2C), purified E2 polypeptide

(Figure 1A) possessed �40% of the ferroxidase activity of

APP695a (Figure 2A). We explored for other domains of APP

needed to restore full activity to E2. Whereas purified E1 domain

possessed no ferroxidase activity, equimolar concentrations of
E1 doubled E2 activity (Figure 2E) to about that of APP695a

(Figure 2A). We mapped this potentiation effect to the growth

factor domain (GFD) within E1 (Rossjohn et al., 1999) (Figure 2A).

GFD did not engender activity from APLP2 (Figure 2A), consis-

tent with the requirement for the REXXE motif.

APP Facilitates Iron Export and Interacts
with Ferroportin
We hypothesized that APP ferroxidase activity may facilitate iron

movement analogous to the interaction of CP with ferroportin

(De Domenico et al., 2007). Ferroportin may be expressed in all

cells, but CP is not, leading us to suspect that APP may play

the ferroxidase role in certain cells that lack CP such as

HEK293T (De Domenico et al., 2007) and cortical neurons

(Klomp et al., 1996). The impact of endogenous APP suppres-

sion by RNAi on iron export was therefore initially studied in

HEK293T cells, where the absence of CP was confirmed by

western blot (not shown). APP-suppressed cells accumulated

significantly more (�50%, p < 0.01) radioactive iron (59Fe) than

sham RNAi controls (Figure 3A and Figure S2A). Addition of

APP695a (2 mM, Figure 3B) or the E2 domain of APP (2 mM,

Figure S2A) to the media, after incorporation of 59Fe into the

cells, significantly promoted the efflux of 59Fe into the media.

E2 lacks the heme-oxygenase (HO) inhibitory domain of APP

(Takahashi et al., 2000) (Figure 1A), and therefore APP is not

promoting iron export in these cells merely through inhibition of
Cell 142, 857–867, September 17, 2010 ª2010 Elsevier Inc. 859



Figure 3. APP Promotes Iron Release,

Lowers the Labile Iron Pool, and Interacts

with Ferroportin in HEK293T Cells

(A) Iron flux wasmeasured after incorporation of Tf

(59Fe)2. APP RNAi (versus nonspecific scrambled

RNAi, ‘‘sham’’) induces cellular 59Fe retention.

Suppression of APP, in triplicate, was confirmed

by western blot (22C11).

(B) APP695a (2 mM) added to the media promotes
59Fe export over 6 hr.

(C and D) Western blot (as shown in Figure S2B)

quantification: APP RNAi increased ferritin (to

�200%) and decreased TFR levels (to �50%),

whereas APP695a partially reversed these effects.

Additional iron (Fe(NH4)2(SO4)2,10 mM) raised the

baseline ferritin and lowered the TFR, but the

effect of adding or subtracting APP was similar.

Sh = ‘‘sham,’’ nonspecific scrambled RNAi.

(E) Interaction of APP with ferroportin using anti-

FPN for detection and anti-N-terminal APP for

immunoprecipitation of HEK293T cells treated

with iron (10 mM). No interaction with APLP2

confirmed specificity to APP. Nonspecific rabbit

IgG was used as a control (‘‘-ve’’).

(F) Biotin-labeled APP695a, when added to

the media of HEK293T cells treated with Fe

(NH4)2(SO4)2 (10 mM), is immunoprecipitated from

the cell homogenate with anti-FPN antibody.

Data are means ± SEM of n = 3. * = p < 0.05, ** =

p < 0.01, *** = p < 0.001; (A) and (B) analyzed by

two-tailed t tests, (C) and (D) by ANOVA + Dun-

net’s tests. See also Figure S2.
HO. Complementary changes in cellular levels of the iron-

responsive proteins ferritin and TFR (Figures 3C and 3D, blots

in Figure S2B), consistent with decreased IRP1 and 2 binding

to a biotinylated IRE probe (Figure S2C), confirmed that APP

acted to lower the LIP. As a further control, we studied the impact

of stable transfection of wild-type (WT) or inactive mutant

(FD1(E14N)-APP695, Figure 2A) APP695 on iron retention in

HEK293T cells. APP695 significantly decreased iron retention

compared to cells transfected with vector alone, but FD1(E14N)-

APP695 increased iron retention, consistent with competition

against endogenous APP (Figures S2D–S2F). These data indi-

cate that ferroxidase-active APP facilitates iron export in

HEK293T cells.

CP coimmunoprecipitates with ferroportin in certain tissues

(De Domenico et al., 2007; Jeong andDavid, 2003). Analogously,

most of the ferroportin in HEK293T cells coimmunoprecipitated

with endogenous APP (Figure 3E, Figure S2G). Furthermore, the

majority of a biotinylated APP695a probe added to HEK293T

cells coimmunoprecipitated with ferroportin (Figure 3F), consis-

tent with exogenous APP695a promoting iron export (Figures

3B–3D) by interacting with ferroportin.

We next studied iron transport in primary cortical neurons from

APP�/� mice. APP�/� neurons retained significantly more 59Fe

than WT neurons (+50%, p < 0.01) (Figure 4A) and exhibited

a corresponding decrease (�60%) in the rate of iron efflux (Fig-
860 Cell 142, 857–867, September 17, 2010 ª2010 Elsevier Inc.
ure 4B). The increased retention of iron in APP�/� neurons was

comparable to that reported for CP�/� astrocytes over the

same 12 hr incubation period (De Domenico et al., 2007; Jeong

and David, 2003). APP695a added to WT neurons induced

a significant concentration-dependent decrease in 59Fe reten-

tion (Figure S3A) and reversed much of the increased 59Fe reten-

tion in APP�/� neurons (Figure 4A). Inactive FD1(E14N)-APP695a

(Figure 2A) could not promote iron efflux (Figure S3B).

The E2 domain of APP also facilitated iron efflux in primary

neuronal cultures (Figure S3C). As with APP-suppressed

HEK293T cells (Figures 3C and 3D), more ferritin and less

TFR were detected in APP�/� compared to WT neurons, exag-

gerated by the addition of 10 mM iron (Figure 4C, westerns

shown in Figure S3D), consistent with increased neuronal

iron. We confirmed (Figure S3D) that neocortical neurons

do not express CP (Klomp et al., 1996). Therefore, cortical neu-

rons may depend upon APP as the ferroxidase partner for

ferroportin. Consistent with this, APP in human and mouse

cortical tissue (including full-length membrane-bound APP)

had a major interaction with ferroportin in immunoprecipitation

studies (Figures 4D and 4E; Figures S4A–S4C). APLP2 did not

coimmunoprecipitate with ferroportin from these tissues

(Figure 4D).

Neocortical ferroportin also coimmunoprecipitated with CP

(Figure 4D). This was expected because despite being absent



Figure 4. Intracellular Iron Accumulates in

APP�/� Neurons

(A) APP�/� primary neurons treated with Tf(59Fe)2
retain more 59Fe after 12 hr than cells from WT

controls. APP695a (2 mM) promotes 59Fe export

into the media after 12 hr from both WT and

APP�/� neurons. In APP�/� neurons this reduces

intracellular iron to approach WT levels.

(B) 59Fe media efflux is decreased for APP�/�

compared to WT primary neurons. Data are 59Fe

counts inmedia expressed as a fraction of the total

in culture.

(C) Western blot (see Figure S3D) quantification of

ferritin and TFR in primary neuronal cultures from

WT and APP�/� matched controls treated ± Fe

(NH4)2(SO4)2 (75 mM). Differences in APP�/� cells

are consistent with increased retention of iron.

(D) APP and CP coimmunoprecipitate with ferro-

portin from human and mouse brain, but not

APLP2.

(E) Determination that membrane-bound full-

length APP interacts with ferroportin using APP

detection antibodies for both the N- and

C-terminal ends of the protein from membrane

lysate of human brain immunoprecipitated by

anti-FPN antibody.

(F) APP�/� neurons incubatedwith increasing con-

centrations of Fe(NH4)2(SO4)2 are more suscep-

tible to iron toxicity, measured by CCK-8 cell

viability assay, than WT neurons.

Data are means ± SEM, n = 3, * = p < 0.05, ** = p <

0.01, *** = p < 0.001. (A)–(C) analyzed by two-tailed

t tests, (D) by ANOVA + Dunnet’s test compared to

WT. See also Figure S3 and Figure S4.
in cortical neurons, CP is expressed in glia (Klomp et al., 1996).

Coimmunoprecipitation of CP by anti-ferroportin was slightly

but significantly increased in APP�/� brain tissue (Figures

S4D and S4E), possibly due to loss of APP competition for ferro-

portin interaction. Therefore, ferroportin divides its interactions

between APP and CP in the brain.

However, unlike APP695a (Figure 3B and Figure 4A), CP (2 mM)

induced no significant increase in 59Fe efflux when added to

primary neurons or HEK293T cells (data not shown), consistent

with previous observations that the ability of CP to stabilize fer-

roportin was cell type specific and probably limited to cells

that express CP (De Domenico et al., 2007).

Consistent with APP ferroxidase activity being protective, the

LD50 for Fe2+ toxicity was 10-fold higher for primary neurons in

culture from WT (2001 mM) compared to those from APP�/�

mice (234 mM, Figure 4F). However, domains and posttransla-

tional modifications outside of the ferroxidase domain can

promote protection against oxidative damage (Furukawa et al.,

1996). To appraise the contribution of APP ferroxidase activ-

ity to neuroprotection against non-iron oxidative injuries, we

studied the effects of APP695 compared to FD1(E14N)-APP695

in protecting primary neurons from oxidative stress induced by

glutamate excitotoxicity, where sAPPa prevents intracellular

Ca2+ rise (Furukawa et al., 1996; Mattson et al., 1993). Whereas

APP695 significantly prevented glutamate toxicity under these

conditions, the ferroxidasemutant did not (Figure S3E). Although

this result raises the hypothesis that some previously reported
neuroprotective effects of APP may reflect ferroxidase activity,

this is not surprising because the presence of labile iron exacer-

bates all forms of reactive oxygen species damage (through Fen-

ton chemistry), and therefore the ability of the APP ferroxidase

domain to minimize labile iron is likely to be protective to some

extent against oxidative stress from any origin. We therefore

tested whether APP protects the intact brain from toxicity

induced by excess iron exposure.

APP Prevents Iron Accumulation and Oxidative Stress
In Vivo
Aceruloplasminemic patients and CP knockout mice exhibit

marked age-related iron accumulation in liver, pancreas, and

brain astrocytes (Harris et al., 1995; Patel et al., 2002) but not

cortical neurons (Gonzalez-Cuyar et al., 2008; Jeong and David,

2006; Patel et al., 2002). To test whether APP deficiency would

cause a similar vulnerability, 12-month-old APP�/� mice were

compared to WT age-matched controls fed a normal or high-

iron diet for 8 days. Consistent with our cell culture findings

(Figure 3 and Figure 4), APP�/�mice fed a normal diet had signif-

icantly more total iron in brain (+26%), liver (+31%), and kidney

(+15%) tissue than age-matched controls (Figure 5A; Table

S1). After challenge with the high-iron diet, WT mice had no

significant change in tissue iron levels. In contrast, APP�/�

mice accumulated significantly more iron in brain (+13%) and

particularly liver (+90%) than APP�/� mice on a normal diet (Fig-

ure 5A). Ferritin levels were also increased in brain and liver
Cell 142, 857–867, September 17, 2010 ª2010 Elsevier Inc. 861



Figure 5. Dietary Iron Challenge Increases

Tissue Iron in APP�/� but Not Normal Mice

(A) Twelve-month-old APP�/� mice accumulate

iron within brain (�125%), liver (�130%), and

kidney (�115%) tissue compared to WT matched

controls. Iron levels were further increased in brain

(�140%) and liver (�250%) of APP�/� mice fed

a high iron diet for 8 days, which did not alter

iron levels in WT matched controls.

(B–G) Labile redox-active iron detected by modi-

fied Perl’s staining in hepatocytes (B and E) and

cortical neurons (C, D, F, and G) from APP�/�

(E–G) and WT matched controls (B–D) fed a high

iron diet.

(H) Computer-assisted quantification of modified

Perl’s-stained surface area of brain sections from

mice fed on a high iron diet (n = 4 mice, average

of 3 sections each) indicates that APP�/� mice

have significantly more redox-active iron-positive

cells per hemisphere, and in the hippocampus,

compared to WT.

(I) Ferroxidase activity in brain from APP�/�

mice is decreased compared to WT matched

controls. CP activity is determined after treatment

of the tissue with Zn2+ to inhibit the activity of

APP. APP activity is determined after treatment

of the tissue with NaN3 to inhibit the activity

of CP.

(J–K) In accord with increased redox-active iron in

liver and brain from APP�/� mice, significantly

increased protein carbonylation occurs in APP�/�

mice fed on a high iron diet (J) and decreased

glutathione in APP�/� ± high iron diet (K).

Data are means ± SEM, n = 4, * = p < 0.05, ** =

p < 0.01, *** = p < 0.001. (A) analyzed by

ANOVA + Dunnet’s test compared to WT, (H)–(K)

by two-tailed t tests. See also Figure S4 and

Table S1.
tissue from APP�/� mice on the high iron diet (data not shown)

consistent with increased iron content. Iron supplementation

did not affect the tissue levels of other metals (Table S1).

We examined the livers and cortex of APP�/� and WT mice

with a modified Perl’s histological stain, which utilizes intracel-

lular Fe2+ to generate H2O2 (Gonzalez-Cuyar et al., 2008; Smith

et al., 1997). This revealed elevated hepatocytic Fe2+ (Figures

5B and 5E) and intraneuronal Fe2+ (Figures 5C, 5D, and 5F–5H)

of APP�/� mice compared to WT matched controls both fed

iron. Fe2+ accumulation in the brain was confined to neocortical

and hippocampal neurons (Figure 5H), while sparing microglia

and astrocytes that are known to express CP (Gonzalez-Cuyar

et al., 2008; Harris et al., 1995; Patel et al., 2002). Assay of tissue

ferroxidase activity revealed a significant �40% decrease in

APP�/� brain (Figure 5I). NaN3 inhibition of CP activity in WT

brain tissue revealed �40% residual activity and the complete

loss of ferroxidase activity in the brains of APP�/� mice

(Figure 5I). These data are consistent with APP acting as

a neuronal ferroxidase. Suppression of APP activity in WT brain
862 Cell 142, 857–867, September 17, 2010 ª2010 Elsevier Inc.
tissue with Zn2+ revealed�60% activity, consistent with residual

CP ferroxidase activity, and was slightly increased in APP�/�

mice (Figure 5I), perhaps reflecting homeostatic compensation.

There were no conspicuous changes in ferroportin or CP levels

in liver and brain samples from APP�/� mice on a normal or

iron-supplemented diet (Figure S4F).

The constitutive abundance of APP inWT liver was found to be

similar to that of CP (Figure S4G). Therefore, the increase in liver

iron in APP�/� mice was consistent with a major loss in the total

ferroxidase complement of the tissue. Conversely, APP�/� heart

and lung tissue did not show elevated iron levels even with die-

tary iron challenge, consistent with these organs having the

lowest constitutive levels of APP (Figure S4G) and expressing

alternative iron-export ferroxidases, CP (Figure S4G), and

hephaestin (Qian et al., 2007). Similarly, APP levels in astrocytes

aremuch lower than in neurons (Gray and Patel, 1993;Mita et al.,

1989; Rohan de Silva et al., 1997), and probably too low to

prevent iron accumulation in CP�/� astrocytes. Cortical neurons

have no redundancy in their export ferroxidases and therefore



Figure 6. Decreased Cortical APP Ferroxi-

dase Activity in Alzheimer’s Disease

(A) AD cortical tissue accumulates iron compared

to age-matched nondemented (ND) samples. Iron

levels were not changed in pathologically unaf-

fected cerebellum from the same subjects.

(B) APP-specific ferroxidase activity is decreased

in AD cortical tissue (�75%) but not in cerebellum,

consistent with the pattern of iron accumulation in

(A). Chelating Zn2+ from the tissue with TPEN

restores the APP ferroxidase activity in AD sample

to levels comparable to ND cortex.

(C) Both free Zn2+, as well as Zn2+ dissociating

from washed Zn2+:Ab1-42 aggregates, inhibit

APP695a ferroxidase activity but not CP activity.

(D) Decrease in APP-specific ferroxidase activity

correlates with increased Ab content in AD cortical

tissue (p < 0.0001, r2 = 0.829).

(E) APP ferroxidase activity is not changed in

cortical tissue from non-b-amyloid burdened

neurodegenerative diseases such as Frontotem-

poral dementia and Parkinson’s disease.

(A–C and E) Data are means ± SEM, n = 8, ** = p <

0.01, *** = p < 0.001 by two-tailed t tests.

See also Figure S1, Figure S5, and Table S2.
accumulate iron in the absence of APP (Figures 5F–5H). The like-

lihood that APP is the unique ferroxidase of cortical neurons is

supported by the lack of iron increase in the cortical neurons

of CP�/�mice even at an age (24months) when there is amarked

increase in iron in other cells (Jeong and David, 2006; Patel et al.,

2002).

Increased Fe2+ generates oxidative stress, and indeed theFe2+

increase detected in iron-fed APP�/� mice was accompanied

by increased protein carbonylation (indicative of hydroxyl radical

damage, Figure 5J) and decreased glutathione levels (Figure 5K),

signifying depleted antioxidant reserves. Despite these signs of

stress, stereological counting revealed no significant neuronal

loss within the brain in iron-fed mice (data not shown). A more

protracted period of iron exposure, or higher doses, may be

needed to overcome survival defenses. The observation that

iron enters the brain neurons of iron-fed APP�/� mice (Figure 5)

also indicates either that APP is a component of the blood-brain

barrier or that prandial iron normally transits the blood-brain

barrier to neurons where it is then exported in an APP-dependent

manner.

APP Ferroxidase Activity Is Inhibited by Zinc
in Alzheimer’s Disease
We explored whether a failure of APP ferroxidase activity could

contribute to the elevated cortical iron that characterizes AD
Cell 142, 857–867, Se
pathology. Elevated iron and ferritin are

prominent within the vicinity of amyloid

plaques in both humans (Grundke-Iqbal

et al., 1990; Lovell et al., 1998; Robinson

et al., 1995) and APP transgenic mice (El

Tannir El Tayara et al., 2006; Falangola

et al., 2005; Jack et al., 2005). We indeed

found an �45% increase in iron in post-
mortem AD cortical tissue (Brodmann area 46) but no change

in pathologically unaffected cerebellum from the same patients

(Figure 6A). This matched a 75% (p < 0.001) decrease in APP fer-

roxidase activity in the same AD cortical samples compared to

the nondemented age-matched samples, with no difference in

cerebellar tissue activities (Figure 6B). The ferroxidase activities

were confirmed to be APP by immunodepletion experiments

(Figure S5A).

The loss of APP ferroxidase activity in AD cortex was not due

to decreased levels of APP (Figure S5B). Therefore, a factor in AD

cortex appears to inhibit APP. Zn2+ is the only identified inhibitor

of APP ferroxidase activity (Figure 2A), but total zinc levels were

not significantly elevated in the AD cortical samples (Figure S5C).

However, Zn2+ characteristically accumulates in extracellular

amyloid in AD (Lovell et al., 1998; Religa et al., 2006; Suh et al.,

2000), which is too small a volume fraction to elevate total tissue

zinc levels until the disease is advanced (Religa et al., 2006).

Indeed, treatment of the AD cortical samples with the Zn2+-

selective chelator TPEN restored APP ferroxidase activity to

levels not significantly different from nondemented samples

(Figure 6B), confirming that APP is inhibited by Zn2+ in AD tissue.

TPEN did not significantly change ferroxidase activity in nonde-

mented cortical samples (Figure 6B), indicating that Zn2+ is not

inhibiting APP in normal tissue. To confirm that the APP ferroxi-

dase activity in AD is being inhibited by Zn2+, we titrated
ptember 17, 2010 ª2010 Elsevier Inc. 863



Figure 7. Model for the Role of APP in

Cellular Iron Export and Its Inhibition in Alz-

heimer’s Disease

FPN transports Fe2+ from the cytosol across the

plasma membrane. Fe2+ is then converted to Fe3+

by a membrane-bound or soluble ferroxidase

such as CP or APP (shown). The absence of the

ferroxidase results in decreased iron release into

the extracellular space, as Fe2+ is unable to be

converted into Fe3+. APP ferroxidase is inhibited

by extracellular Zn2+ (Figure 2A and Figure 6B),

which can exchange from Ab:Zn2+ aggregates

(Figure 6D). Free Zn2+ is normally buffered by the

presence of ligands such as metallothioneins

(including metallothionein III in the extracellular

space), which are lost in AD (Uchida et al., 1991).

Loss of metallothioneins and other Zn2+ buffers

may lie upstream in amyloid pathology, APP fer-

roxidase inhibition, and neuronal iron accumula-

tion in AD. See also Figure S6.
additional Zn2+ into samples that had been treated with 20 mM

TPEN (Figure S5D). Whereas Zn2+ concentrations of R20 mM

were required to suppress APP ferroxidase activity in normal

tissue under these conditions, far lower Zn2+ concentrations

(R2 mM) suppressed activity in AD samples (IC50 for normal

tissue = 22.6 mM, IC50 for AD = 10.2 mM, Figure S5D). Together

these data indicate that although there is no clear elevation in

total zinc in AD tissue, there is a greater fraction of exchangeable

Zn2+, which is inhibiting APP ferroxidase.

Is the Zn2+ trapped in extracellular Ab deposits sufficiently

exchangeable to be the source of Zn2+ that inhibits APP ferrox-

idase in AD tissue? To test this we prepared washed (no free

Zn2+) synthetic Ab:Zn2+ precipitates and found that they indeed

inhibited APP695a activity as efficiently as free Zn2+ in solution,

whereas Ab alone had no effect (Figure 6C). Therefore, Ab traps

Zn2+ but can readily exchange the Zn2+ with APP. Neither free

Zn2+ nor Ab:Zn2+ complexes inhibited CP activity (Figure 6C).

Consistent with Ab presenting Zn2+ to suppress APP ferroxi-

dase activity in the brain, there was a significant negative corre-

lation between Ab burden and APP ferroxidase activity in a series

of AD (p < 0.0001, Figure 6D) and APP transgenic (Tg2576,

Figures S5E and S5F) cortical samples. However, APP ferroxi-

dase activity was not diminished in cortical tissue from Fronto-

temporal dementia or Parkinson’s disease (Figure 6E) that

lacked amyloid pathology (Table S2), or from Tg2576 mice at

an age prior to amyloid pathology (Figures S5E and S5F).

DISCUSSION

Our findings identify APP as a functional ferroxidase similar to

CP. Both full-length and soluble APP species were found to

have major interactions with ferroportin to facilitate iron export

from certain cells including neurons (Figure 7). CP similarly exists

in GPI-anchored and -soluble forms, with the purpose of sepa-

rate pools remaining uncertain, although activity at a distance

from the cell of origin is likely. While the ferroxidase function of
864 Cell 142, 857–867, September 17, 2010 ª2010 Elsevier Inc.
APP is compatible with IRE-regulated translation (Rogers et al.,

2002), the relationship between iron-load and APP processing

remains to be elucidated, although we note a prior report that

exogenous iron promotes a-cleavage in cell culture (Bodovitz

et al., 1995). APP therefore plays an important role in preventing

iron-mediated oxidative stress through separate domains: an

HO-inhibitory domain (Figure 1A) that prevents the release of

Fe2+ from heme (Takahashi et al., 2000) and, here, a separate fer-

roxidase domain. The ferroxidase activity of the APP is unique

among its protein family and, like ferritin, correlates with the

presence of the mRNA IRE motif, which is not present in

APLP1 and APLP2 (Figure S6). The ferroxidase center of APP

resides in the REXXE consensus motif of the E2 domain, with

a remote potentiation domain within the GFD of E1 (Figure 1

and Figure 2). This potentiation by heterologous components is

reminiscent of the augmentation of H-ferritin ferroxidase activity

by L-ferritin, where the active site is on H-ferritin yet heteropoly-

mers of H and L subunits have a higher ferroxidase activity per H

subunit than H homopolymers (Yang et al., 1998).

CP and APP may be backup ferroxidase activities in tissues

where they are colocated (Figures S4E and S4G) or in glia that

express both APP and CP. The purpose behind such apparent

redundancy in some cells is yet unclear. But as neurons lack

CP, APP may be the sole iron-export ferroxidase of neurons.

Our findings indicate that inhibition of APP ferroxidase activity

may contribute to neuronal iron accumulation in AD cortex.

Elevated brain iron is a complication of aging (Bartzokis et al.,

1994a; De Domenico et al., 2008; Hallgren and Sourander,

1958; Maynard et al., 2002) and is a feature of several neurode-

generative disorders (Zecca et al., 2004). Failure of ferroxidases

CP (Harris et al., 1995), ferritin (Chinnery et al., 2007), and frataxin

(Mantovan et al., 2006) cause various neurodegenerative

diseases, and it is intriguing that here another systemically

expressed ferroxidase, APP, is linked to a major brain disease,

AD. The elevation of brain iron in AD affects the parenchyma

(Bartzokis et al., 1994b; Honda et al., 2005; Smith et al., 1997)



but is particularly conspicuous in the dystrophic neurites of

amyloid plaques (Grundke-Iqbal et al., 1990; Lovell et al., 1998;

Robinson et al., 1995) where its MRI signal in AD correlates

with dementia severity (Ding et al., 2009).

Our data indicate a mechanism by which amyloid pathology

could disrupt local iron homeostasis. We found that APP ferrox-

idase activity is inhibited by a tissue source of Zn2+ in AD cortical

tissue (Figure 6B). In AD cortex, Ab binds Zn2+ to achieve path-

ological concentrations (�1 mM) in plaques (Dong et al., 2003;

Lovell et al., 1998; Opazo et al., 2002) and seems a possible

reservoir for APP inhibition. Supporting this possibility, Ab readily

transfers Zn2+ to inhibit APP ferroxidase activity (Figure 6C),

exchangeable Zn2+ (as measured by APP inhibition) is increased

in AD tissue (Figure S5D), and Ab burden inversely correlates

with APP ferroxidase activity (Figure 6D). Additionally, Zn2+ buff-

ering appears far more limited in AD cortex than nondemented

tissue (Figure S5D), which could be consistent with loss of metal-

lothionein III (Uchida et al., 1991) that is released into the synaptic

vicinity by astrocytes and prevents metal ion transfer to Ab

(Meloni et al., 2008). Alternatively, oxidation, which is marked

in AD tissue, may prevent metallothioneins from binding Zn2+

(Hao and Maret, 2005). As Zn2+ induces Ab aggregation (Bush

et al., 1994; Lee et al., 2002), we hypothesize that loss of Zn2+

buffering may be an upstream lesion for both amyloid pathology

and APP ferroxidase inhibition (Figure 7).

APP is another elevated component of dystrophic neurites

within plaque (Cras et al., 1991) where, as noted above, it colo-

cates with high iron concentrations. We hypothesize that in

neuritic pathology, elevated iron summons further APP produc-

tion (Rogers et al., 2002), but the APP generated to export iron

becomes inhibited by elevated extracellular Zn2+ dissociating

from Ab (Figure 7). This underscores the buffering of Zn2+ as

a therapeutic strategy for AD and could explain some activities

of Zn2+ ionophores (clioquinol and PBT2) that have shown potent

efficacy in preclinical APP transgenic models of AD (Adlard et al.,

2008; Cherny et al., 2001) and significantly improved cognition in

phase 2 AD clinical trials (Faux et al., 2010; Lannfelt et al., 2008;

Ritchie et al., 2003).

The ferroxidase and iron-trafficking properties of APP indicate

an important biological activity for a protein whose complex pro-

cessing has been extensively studied but which has lacked

a conspicuous purpose. These data indicate that some neurotro-

phic properties of APP and its fragments (Rossjohn et al., 1999)

could be mediated by iron regulation.

EXPERIMENTAL PROCEDURES

Human

All human tissue cases were obtained from the Victorian Brain Bank Network.

Whole brains were stored at �80�C until required. Cortical tissue from nonde-

mented controls, AD, Parkinson’s disease, and Frontotemporal dementia were

all taken fromBrodmann’s area 46. Cerebellum tissue was also used from non-

demented controls and AD patients. For Ab analysis, western blots were

carried out on total brain homogenates. Ferroxidase activity was tested by

transferrin ferroxidase assay on PBS + 1% Triton X-100 (PBST) extracted

homogenates.

Biotin Labeling of APP695a

Sulfo-NHS-SS-Biotin (Thermo Scientific) was added to APP695a in 20-fold

excess and incubated at room temperature for 1 hr in phosphate-buffered
saline (PBS). Removal of nonreacted sulfo-NHS-SS-Biotin was by gel filtration

using a Zeba Desalt spin column (Thermo Scientific).

Ab Preparation

For aggregation studies, 100 mM Ab1–42 was incubated ± 200 mM ZnCl2 for

16 hr to form precipitates as previously reported (Bush et al., 1994). Insoluble

Ab1–42 was then centrifuged at 40,000 g for 10 min and the pellet repeatedly

washed in PBS. Aggregated Ab1–42 ± Zn was then added to the Tf ferroxidase

assay (described below) at a final concentration of 10 mM Ab1–42 and

compared to controls including freshly prepared nonaggregated 10 mMAb1–42.

Transferrin Ferroxidase Assay

The assay was based upon established procedures (Bakker and Boyer, 1986),

utilizing the spectroscopic change in apo-transferrin when loaded with Fe3+.

Km and Vmax values and curve-fitting were calculated by GraphPad Prism v

5.0. In a cuvette was added (in order): 100 ml ddH2O, 200 ml HBS buffer

(150 mM NaCl, 50 mM HEPES), pH 7.2, 200 ml of 275 mM apo-transferrin,

100 ml of sample (200 nM recombinant protein or 30 mg total tissue homoge-

nate) and 400 ml of 275 mM ferrous ammonium sulfate (NH4)2Fe(SO4)2. For

studies of pH-dependence, the buffers (50 mM) were: pH 5 sodium acetate,

pH 5.5–6.5 MES, pH 7.0–9.0 Tris. The mixture was incubated for 5 min at

37�C with agitation, and absorbance read at 460 nm. Extinction coefficient

of diferric transferrin is 4.56 mM�1.

Immunoprecipitation

HEK293T cells (±3 hr preincubation with 2 mM biotin-APP695a), or brain

homogenate, was extracted into PBST.Human brainmembrane homogenates

were extracted in PBSand then sodiumcarbonate (pH11). Protein content was

then determined by BCA. One hundred micrograms of the sample was then

precleared for nonspecific binding with protein G agarose beads for 1 hr at

4�C. The sample was then incubated with capture antibody (rabbit anti-ferro-

portin, 1:200, Lifespan Biosciences), mouse anti-N-term APP (22C11), rabbit

anti-CP, ormouse anti-APLP2 (1:1000, R&D systems) for 1 hr (4�C) before add-
ing fresh equilibrated protein G agarose beads and mixed for a further 2–3 hr

(4�C). Protein G agarose beads were then washed in PBST and bound proteins

were eluted with SDS-PAGE loading buffer. The bound and unbound proteins

were separated on 4%–20% PAGE (Bis-Tris, Invitrogen) and visualized by

western analysis with a detection antibody: mouse anti-N-term APP, mouse

anti-Ab domain of APP (1:500,WO2), rabbit anti-C-term APP (1:10,000, Chem-

icon), rabbit anti-ferroportin, or, in the case of biotin-labeled studies, streptavi-

din crosslinked to horseradish peroxidase (HRP, 1:15,000, Invitrogen).

Histochemical Detection of Iron by Perl’s Staining

For direct visualization of redox-active Fe2+ in whole brain hemisphere and

liver paraffin-embedded sections, a modified Perl’s technique was used, as

previously described (Gonzalez-Cuyar et al., 2008; Smith et al., 1997). The

number of iron-positive structures was quantified using color selection to

separate cells from background. Deparaffinized and rehydrated tissue

sections (7 mm) were incubated at 37�C for 1 hr in 7% potassium ferrocyanide

with aqueous hydrochloric acid (3%) and subsequently incubated in 0.75 mg/

ml 3,30-diaminobenzidine and 0.015% H2O2 for 5–10 min. When required,

sections were counterstained in Mayer’s hematoxylin for 2 min and washed

in Scott’s tap water before mounting. For brain, the number of iron-positive

structures was quantified using color selection to separate cells from back-

ground as described in Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, three

figures, and one table and can be found with this article online at doi:10.1016/

j.cell.2010.08.014.
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