11 research outputs found

    Causes of genome instability: the effect of low dose chemical exposures in modern society.

    Get PDF
    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Annual Report to the Nation on the Status of Cancer, 1975-2006, Featuring Colorectal Cancer Trends and Impact of Interventions (Risk Factors, Screening, and Treatment) to Reduce Future Rates

    Get PDF
    BACKGROUND. The American Cancer Society, the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR) collaborate annually to provide updated information regarding cancer occurrence and trends in the United States. This year’s report includes trends in colorectal cancer (CRC) incidence and death rates and highlights the use of microsimulation modeling as a tool for interpreting past trends and projecting future trends to assist in cancer control planning and policy decisions. METHODS. Information regarding invasive cancers was obtained from the NCI, CDC, and NAACCR; and information on deaths was obtained from the CDC’s National Center for Health Statistics. Annual percentage changes in the age-standardized incidence and death rates (based on the year 2000 US population standard) for all cancers combined and for the top 15 cancers were estimated by joinpoint analysis of long-term trends (1975-2006) and for short-term fixed-interval trends (1997-2006). All statistical tests were 2-sided. RESULTS. Both incidence and death rates from all cancers combined significantly declined (P \u3c .05) in the most recent time period for men and women overall and for most racial and ethnic populations. These decreases were driven largely by declines in both incidence and death rates for the 3 most common cancers in men (ie, lung and prostate cancers and CRC) and for 2 of the 3 leading cancers in women (ie, breast cancer and CRC). The long-term trends for lung cancer mortality in women had smaller and smaller increases until 2003, when there was a change to a non-significant decline. Microsimulation modeling demonstrates that declines in CRC death rates are consistent with a relatively large contribution from screening and with a smaller but demonstrable impact of risk factor reductions and improved treatments. These declines are projected to continue if risk factor modification, screening, and treatment remain at current rates, but they could be accelerated further with favorable trends in risk factors and higher utilization of screening and optimal treatment

    Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates

    No full text
    BACKGROUND. The American Cancer Society, the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR) collaborate annually to provide updated information regarding cancer occurrence and trends in the United States. This year's report includes trends in colorectal cancer (CRC) incidence and death rates and highlights the use of microsimulation modeling as a tool for interpreting past trends and projecting future trends to assist in cancer control planning and policy decisions. METHODS. Information regarding invasive cancers was obtained from the NCI, CDC, and NAACCR; and information on deaths was obtained from the CDC's National Center for Health Statistics. Annual percentage changes in the age-standardized incidence and death rates (based on the year 2000 US population standard) for all cancers combined and for the top 15 cancers were estimated by joinpoint analysis of long-term trends (1975-2006) and for short-term fixed-interval trends (1997-2006). All statistical tests were 2-sided. RESULTS. Both incidence and death rates from all cancers combined significantly declined (P < .05) in the most recent time period for men and women overall and for most racial and ethnic populations. These decreases were driven largely by declines in both incidence and death rates for the 3 most common cancers in men (ie, lung and prostate cancers and CRC) and for 2 of the 3 leading cancers in women (ie, breast cancer and CRC). The long-term trends for lung cancer mortality in women had smaller and smaller increases until 2003, when there was a change to a nonsignificant decline. Microsimulation modeling demonstrates that declines in CRC death rates are consistent with a relatively large contribution from screening and with a smaller but demonstrable impact of risk factor reductions and improved treatments. These declines are projected to continue if risk factor modification, screening, and treatment remain at current rates, but they could be accelerated further with favorable trends in risk factors and higher utilization of screening and optimal treatment. CONCLUSIONS. Although the decrease in overall cancer incidence and death rates is encouraging, rising incidence and mortality for some cancers are of concern

    Cause-specific mortality and second cancer incidence after non-Hodgkin lymphoma: a report from the Childhood Cancer Survivor Study

    No full text
    Second primary malignancies and premature death are a concern for patients surviving treatment for childhood lymphomas. We assessed mortality and second malignant neoplasms (SMNs) among 1082 5-year survivors of non-Hodgkin lymphoma (NHL) in the Childhood Cancer Survivor Study, a multi-institutional North American retrospective cohort study of cancer survivors diagnosed from 1970 to 1986. Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) were calculated using US population rates. Relative risks for death and solid tumor SMNs were calculated based on demographic, clinical, and treatment characteristics using Poisson regression models. There were 87 observed deaths (SMR = 4.2; 95% CI, 1.8-4.1) with elevated rates of death from solid tumors, leukemia, cardiac disease, and pneumonia. Risk for death remained elevated beyond 20 years after NHL. Risk factors for death from causes other than NHL included female sex (rate ratio [RR] = 3.4) and cardiac radiation therapy exposure (RR = 1.9). There were 27 solid tumor SMNs (SIR = 3.9; 95% CI, 2.6-5.7) with 3% cumulative incidence between 5 and 20 years after NHL diagnosis. Risk factors were female sex (RR = 3.1), mediastinal NHL disease (RR = 5.2), and breast irradiation (RR = 4.3). Survivors of childhood NHL, particularly those treated with chest RT, are at continued increased risk of early mortality and solid tumor SMNs

    Causes of genome instability: the effect of low dose chemical exposures in modern society

    No full text

    5th International Symposium on Focused Ultrasound

    No full text
    corecore