46 research outputs found

    Vitiligo and autoimmune thyroid disorders

    Get PDF
    Vitiligo represents the most common cause of acquired skin, hair and oral depigmentation, affecting 0.5-1% of the population worldwide. It is clinically characterized by the appearance of disfiguring circumscribed skin macules following melanocyte destruction by autoreactive cytotoxic T lymphocytes. Patients affected by vitiligo usually show a poorer quality of life and are more likely to suffer from depressive symptoms, particularly evident in dark-skinned individuals. Although vitiligo is a non-fatal disease, exposure of affected skin to UV light increases the chance of skin irritation and predisposes to skin cancer. In addition, vitiligo has been associated to other rare systemic disorders due to presence of melanocytes in other body districts, such as in the eyes, auditory, nervous and cardiac tissues, where melanocytes are thought to have roles different from that played in the skin. Several pathogenetic models have been proposed to explain vitiligo onset and progression, but clinical and experimental findings point mainly to the autoimmune hypothesis as the most qualified one. In this context, it is of relevance the strong association of vitiligo with other autoimmune diseases, in particular with autoimmune thyroid disorders, such as Hashimoto thyroiditis and Graves’ disease. In this review, after a brief overview of vitiligo and its pathogenesis, we will describe the clinical association between vitiligo and autoimmune thyroid disorders and discuss the possible underlying molecular mechanism(s)

    Long non-coding RNA uc.291 controls epithelial differentiation by interfering with the ACTL6A/BAF complex.

    Get PDF
    The mechanisms that regulate the switch between epidermal progenitor state and differentiation are not fully understood. Recent findings indicate that the chromatin remodelling BAF complex (Brg1-associated factor complex or SWI/SNF complex) and the transcription factor p63 mutually recruit one another to open chromatin during epidermal differentiation. Here, we identify a long non-coding transcript that includes an ultraconserved element, uc.291, which physically interacts with ACTL6A and modulates chromatin remodelling to allow differentiation. Loss of uc.291 expression, both in primary keratinocytes and in three-dimensional skin equivalents, inhibits differentiation as indicated by epidermal differentiation complex genes down-regulation. ChIP experiments reveal that upon uc.291 depletion, ACTL6A is bound to the differentiation gene promoters and inhibits BAF complex targeting to induce terminal differentiation genes. In the presence of uc.291, the ACTL6A inhibitory effect is released, allowing chromatin changes to promote the expression of differentiation genes. Thus, uc.291 interacts with ACTL6A to modulate chromatin remodelling activity, allowing the transcription of late differentiation genes

    Evaluation of Clinicopathological and Molecular Parameters on Disease Recurrence of Papillary Thyroid Cancer Patient: A Retrospective Observational Study

    Get PDF
    The American Joint Committee on Cancer has revised the Tumor-Node-Metastasis (TNM) staging system for papillary thyroid cancer (PTC) patients. We examined the impact of this new classification (TNM-8) on patient stratification and estimated the prognostic value of clinicopathological features for the disease-free interval (DFI) in a cohort of 1148 PTC patients. Kaplan-Meier analyses showed that all clinicopathological parameters analyzed, except age and multifocality, were associated significantly with DFI. Cox regression identified tall cell PTC variant and stage as independent risk factors for DFI. When the stage was replaced with age, tumor size, and lymph node (LN) metastases in the set of covariates, the lateral LN metastases stood out as the strongest independent predictor of DFI, followed by tall cell variant and age. A noteworthy result emerging from these analyzes is that regression models had lower Akaike and Bayesian information criterions if variables were categorized based on the TNM-7. In addition, we examined data from a different PTC patient cohort, acquired from The Cancer Genome Atlas database, to verify whether the DFI prediction could be enhanced by further clinicopathological and molecular parameters. However, none of these was found to be a significant predictor of DFI in the Cox model

    Predicting respiratory failure in patients infected by SARS-CoV-2 by admission sex-specific biomarkers

    Get PDF
    Background: Several biomarkers have been identified to predict the outcome of COVID-19 severity, but few data are available regarding sex differences in their predictive role. Aim of this study was to identify sex-specific biomarkers of severity and progression of acute respiratory distress syndrome (ARDS) in COVID-19. Methods: Plasma levels of sex hormones (testosterone and 17β-estradiol), sex-hormone dependent circulating molecules (ACE2 and Angiotensin1-7) and other known biomarkers for COVID-19 severity were measured in male and female COVID-19 patients at admission to hospital. The association of plasma biomarker levels with ARDS severity at admission and with the occurrence of respiratory deterioration during hospitalization was analysed in aggregated and sex disaggregated form. Results: Our data show that some biomarkers could be predictive both for males and female patients and others only for one sex. Angiotensin1-7 plasma levels and neutrophil count predicted the outcome of ARDS only in females, whereas testosterone plasma levels and lymphocytes counts only in males. Conclusions: Sex is a biological variable affecting the choice of the correct biomarker that might predict worsening of COVID-19 to severe respiratory failure. The definition of sex specific biomarkers can be useful to alert patients to be safely discharged versus those who need respiratory monitoring

    Thyroid Imaging Reporting and Data System Score Combined with the New Italian Classification for Thyroid Cytology Improves the Clinical Management of Indeterminate Nodules

    Get PDF
    The new Italian cytological classification (2014) of thyroid nodules replaced the TIR3 category of the old classification (2007) with two subclasses, TIR3A and TIR3B, with the aim of reducing the rate of surgery for benign diseases. Moreover, thyroid imaging reporting and data system (TI-RADS) score appears to ameliorate the stratification of the malignancy risk. We evaluated whether the new Italian classification has improved diagnostic accuracy and whether its association with TI-RADS score could improve malignancy prediction. We retrospectively analyzed 70 nodules from 70 patients classified as TIR3 according to the old Italian classification who underwent surgery for histological diagnosis. Of these, 51 were available for cytological revision according to the new Italian cytological classification. Risk of malignancy was determined for TIR3A and TIR3B, TI-RADS score, and their combination. A different rate of malignancy (p=0.0286) between TIR3A (13.04%) and TIR3B (44.44%) was observed. Also TI-RADS score is significantly (p=0.003) associated with malignancy. By combining cytology and TI-RADS score, patients could be divided into three groups with low (8.3%), intermediate (21.4%), and high (80%) risk of malignancy. In conclusion, the new Italian cytological classification has an improved diagnostic accuracy. Interestingly, the combination of cytology and TI-RADS score offers a better stratification of the malignancy risk

    Vitamin D deficiency and supplementation in patients with aggressive B-cell lymphomas treated with immunochemotherapy

    Get PDF
    Vitamin D deficiency has been reported to be a negative prognostic factor in elderly patients with aggressive B-cell lymphomas. In vitro data suggest that vitamin D supplementation may enhance rituximab-mediated cytotoxicity. We prospectively assessed 25-hydroxyvitamin D [25(OH)D] levels at diagnosis in a cohort of 155 patients with aggressive B-cell lymphomas of whom 128 had diffuse large B-cell lymphoma (DLBCL) not otherwise specified. 25(OH)D levels were deficient (<20\uc2 ng/mL) in 105 (67%), insufficient (20\ue2\u80\u9329\uc2 ng/mL) in 32 (21%), and normal (\ue2\u89\ua530\uc2 ng/mL) in 18 (12%) patients with a seasonal variation. Patient characteristics associated with lower 25(OH)D levels were poor performance status, overweight, B-symptoms, elevated LDH, lower albumin and hemoglobin levels. As a result of a change in practice pattern, 116 patients received vitamin D3 (cholecalciferol) supplementation that included a loading phase with daily replacement and subsequent maintenance phase with a weekly dose of 25,000\uc2 IU until end of treatment. This resulted in a significant increase in 25(OH)D levels, with normalization in 56% of patients. We analyzed the impact of 25(OH)D levels on event-free survival in patients treated with Rituximab-CHOP. 25(OH)D levels below 20\uc2 ng/mL at diagnosis and IPI were independently associated with inferior EFS. Moreover, patients with normalized 25(OH)D levels following supplementation showed better EFS than patients with persistently deficient/insufficient 25(OH)D levels. Our study provides the first evidence that achievement of normal 25(OH)D levels after vitamin D3 supplementation is associated with improved outcome in patients with DLBCL and deficient/insufficient 25(OH)D levels when receiving rituximab-based treatment

    SAMMSON fosters cancer cell fitness by concertedly enhancing mitochondrial and cytosolic translation

    No full text
    Synchronization of mitochondrial and cytoplasmic translation rates is critical for the maintenance of cellular fitness, with cancer cells being especially vulnerable to translational uncoupling. Although alterations of cytosolic protein synthesis are common in human cancer, compensating mechanisms in mitochondrial translation remain elusive. Here we show that the malignant long non-coding RNA (lncRNA) SAMMSON promotes a balanced increase in ribosomal RNA (rRNA) maturation and protein synthesis in the cytosol and mitochondria by modulating the localization of CARF, an RNA-binding protein that sequesters the exo-ribonuclease XRN2 in the nucleoplasm, which under normal circumstances limits nucleolar rRNA maturation. SAMMSON interferes with XRN2 binding to CARF in the nucleus by favoring the formation of an aberrant cytoplasmic RNA-protein complex containing CARF and p32, a mitochondrial protein required for the processing of the mitochondrial rRNAs. These data highlight how a single oncogenic lncRNA can simultaneously modulate RNA-protein complex formation in two distinct cellular compartments to promote cell growth

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-γ released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    Myeloid-Derived Suppressor Cells in COVID-19: The Paradox of Good

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Viral replication in the respiratory tract induces the death of infected cells and the release of pathogen- associated molecular patterns (PAMPs). PAMPs give rise to local inflammation, increasing the secretion of pro- inflammatory cytokines and chemokines, which attract immune cells from the blood into the infected lung. In most individuals, lung-recruited cells clear the infection, and the immune response retreats. However, in some cases, a dysfunctional immune response occurs, which triggers a cytokine storm in the lung, leading to acute respiratory distress syndrome (ARDS). Severe COVID-19 is characterized by an impaired innate and adaptive immune response and by a massive expansion of myeloid-derived suppressor cells (MDSCs). MDSCs function as protective regulators of the immune response, protecting the host from over-immunoreactivity and hyper-inflammation. However, under certain conditions, such as chronic inflammation and cancer, MDSCs could exert a detrimental role. Accordingly, the early expansion of MDSCs in COVID-19 is able to predict the fatal outcome of the infection. Here, we review recent data on MDSCs during COVID-19, discussing how they can influence the course of the disease and whether they could be considered as biomarker and possible targets for new therapeutic approaches
    corecore