51 research outputs found
Analysis of ground-source heat pumps in north-of-England homes
YesThe performance of Ground Source Heat Pump (GSHP) systems for domestic use is an increasing area of study in the UK. This paper examines the thermal performance of three bespoke shallow horizontal GSHP systems installed in newly built residential houses in the North of England against a control house which was fitted with a standard gas boiler. A total of 350 metres of High Density Polyethylene pipe with an external diameter of 40 mm was used for each house as a heat pump loop. The study investigated (i) the performance of a single loop horizontal Ground Heat Exchanger (GHE) against a double loop GHE and (ii) rainfall effects on heat extraction by comparing a system with an infiltration trench connected to roof drainage against a system without an infiltration trench above the ground loops. Parameters monitored for a full year from October 2013 to September 2014. Using the double GHE has shown an enhanced performance of up to 20% compared with single GHE. The infiltration trench is found to improve performance of the heat pumps; the double loop GHE system with an infiltration trench had a COP 5% higher than that of the double loop GHE system without a trench
Region prioritization for the development carbon capture and utilization technologies
In recent years several strategies have been developed and adopted to reduce the levels of the Greenhouse Gas Emissions emitted to the atmosphere. The adoption of Carbon Capture and Utilization (CCU) technologies may contribute towards carbon sequestration as well as to the creation of high value products. This study presents a methodology to assess the potential of CO2utilization across Europe, and to identify the European regions with the greater potential to deploy nine selected carbon dioxide utilization technologies. The results show that Germany, UK and France at the first level followed by Spain, Italy and Poland are the countries where the larger quantities of available CO2 could be found but also where the majority of the potential receiving processes are located, and therefore with the greatest potential for CO2 utilization. The study has also revealed several specific regions where reuse schemes based on CO2 could be developed both in Central Europe (Dusseldorf and Cologne – Germany, Antwerp Province and East Flanders –Belgium and Śląskie – Poland) and in Scandinavia (Etelä-Suomi and Helsinki-Uusimaa –Finland). Finally, among all the selected technologies, concrete curing and horticulture production are the technologies with the higher potential for CO2 utilization in Europe
Impacts of geological store uncertainties on the design and operation of flexible CCS offshore pipeline infrastructure
Planning for Carbon Capture and Storage (CCS) infrastructure needs to address the impact of store uncertainties and store flow variability on infrastructure costs and availability. Key geological storage properties (pressure, temperature, depth and permeability) can affect injectivity and lead to variations in CO2 flow, which feed back into the pipeline transportation system. In previous storage models, the interface between the reservoir performance and the transportation infrastructure is unclear and the models are unable to provide details for flow and pressure management within a transportation network in response to changes in the operation of storage sites. Variation in storage demand due to daily and seasonal variations of fossil fuels uses and by extension CO2 flow is also likely to influence transportation infrastructure availability and the capacity to deliver. This work examines, at the level of infrastructure planning, the impact of store properties on CCS transportation and injection infrastructure in the context of flow variability. Different off-shore transportation scenarios, relevant to CCS in the UK, are evaluated using rigorous process modelling tools. Considering flow variations of ±50% of a given baseline flow, the results of the analysis indicate that enabling store flexibility is simpler in reservoirs with an initial pressure above 20 MPa. Wellhead conditions are influenced significantly by subsurface conditions. The operational envelope of the storage site is limited by the proximity of wellhead conditions to the CO2 phase equilibrium line and the maximum fluid velocities inside the well. Given reductions in reservoir permeability, the requirements for pressure delivery are strongly dependent on the reservoir temperature. This work provides detailed insight on the expected impacts of store properties on transportation infrastructure design and operation
Recommended from our members
An analysis of UK policies for domestic energy reduction using an agent based tool
This paper introduces a new agent-based model, which incorporates the actions of individual homeowners in a long-term domestic stock model, and details how it was applied in energy policy analysis. The results indicate that current policies are likely to fall significantly short of the 80% target and suggest that current subsidy levels need re-examining. In the model, current subsidy levels appear to offer too much support to some technologies, which in turn leads to the suppression of other technologies that have a greater energy saving potential. The model can be used by policy makers to develop further scenarios to find alternative, more effective, sets of policy measures. The model is currently limited to the owner-occupied stock in England, although it can be expanded, subject to the availability of data
A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK
bCHP (Biomass combined heat and power) systems are highly efficient at smaller-scales when a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost fossil fuel incumbent. The paper reviews the barriers to small-scale bCHP project development in the UK along with a case study of a failed 1.5MWel bCHP scheme. The paper offers possible explanations for the project's failure and suggests adaptations to improve the project resilience. Analysis of the project's: capital structuring contract length and bankability; feedstock type and price uncertainty, and plant oversizing highlight the negative impact of the existing project barriers on project development. The research paper concludes with a discussion on the effects of these barriers on the case study project and this industry more generally. A greater understanding of the techno-economic effects of some barriers for small-scale bCHP schemes is demonstrated within this paper, along with some methods for improving the attractiveness and resilience of projects of this kind
A novel approach to assessing the commercial opportunities for greenhouse gas removal technology value chains: Developing the case for a negative emissions credit in the UK
In the UK the development of greenhouse gas removal (GGR) technologies at scale by 2050 is seen as an increasingly urgent imperative; necessary to ensure alignment of the UK's carbon targets with international efforts to limit the global temperature increase to 2 °C or less. As such, GGR is an increasingly critical topic for UK climate policy. So far, GGR research has focused on top-down assessment of techno-environmental potential and carbon abatement costs - an approach which aids integrated assessment modelling but does not provide the commercially relevant analysis necessary to understand potential routes to market for this sector. This research reduces this knowledge gap by employing a novel bottom-up perspective to determine the financial opportunities available to GGR business models in Biomass heavy UK energy scenarios. This delivers results relevant to national and sectorial policy and decision making, by quantifying revenue opportunities from future GGR value chains, as well as business model performance. It also informs the innovation, policy, and regulatory environment required to ensure market development and resilience of different revenue streams. The work concludes that energy market policy - specifically access to a carbon credit mechanism - has by far the greatest near term opportunity to drive the negative emissions technologies we assess. This is because the values in this market far outweigh those in related supply chains such as: enhanced oil recovery, afforestation payments, biochar markets, and industry and commercial uses of captured carbon. This data shows that negative emissions technologies in the UK, should not be led by agricultural and land use policy, but should be integrated with energy policy. To do this, the development of a carbon storage credit mechanism analogous to the existing carbon price floor is key. As a proof of concept for a novel method to generate commercially relevant insights for GGR scale up, the research clearly demonstrates that the value pool method provides critical insights to assist GGR development and could form the basis of further work
Method to identify opportunities for CCU at regional level — Matching sources and receivers
Carbon Capture and Utilization is an attractive strategy not only due to its potential for CO2 emissions reduction but also because it enables the creation of valuable products. The development of CO2-based industrial symbiosis partnerships can contribute significantly towards achieving the goals of GHG emissions reduction on a European level by 2030, while at the same time it leads to an increased added value through the development of new production lines and carbon neutral products. The presented article focuses on identifying potential partnerships between companies that produce CO2 and companies that may reuse CO2 as input for their industrial process. A novel methodological framework is presented based on developing generic matrices for CO2 sources and receivers and matching the industrial units based on geographical and technical criteria. Moreover, the paper provides the technical requirements of 17 CO2 utilization technologies with relatively high technology readiness level, including the CO2-to-product ratio, the required purity, pressure, temperature and the presence of a catalyst, as well as potential synergies and additional requirements. The methodology has been applied to the Västra Götaland region in West Sweden and the most promising CCU symbiosis have been identified. These include mineral carbonation (annual uptake: 59,600 tCO2), greenhouses (26,000 tCO2), algae production, methanol production (85,500 tCO2), power to gas (66,500 tCO2), pH control, lignin production, polymers synthesis and concrete curing (96,000 tCO2). If all of them could be applied, the total annual CO2 reduction would exceed 250,000 tCO2 per year
- …