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An analysis of UK policies for domestic energy reduction using
an agent based tool

Timothy Lee, Runming Yao n, Phil Coker
The School of Construction Management and Engineering, The University of Reading, Whiteknights, PO Box 219, Reading, UK

H I G H L I G H T S

� Analyse UK energy policy using a novel agent-based domestic stock model.
� Current policies are insufficient to achieve an 80% CO2 reduction by 2050.
� The addition of a carbon tax on domestic energy use increases the reductions.
� Behavioural change can increase adoption of energy saving technologies.
� The most favourable conditions achieved a reduction of less than 60% from 2008 to 2050.
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a b s t r a c t

This paper introduces a new agent-based model, which incorporates the actions of individual home-
owners in a long-term domestic stock model, and details how it was applied in energy policy analysis.
The results indicate that current policies are likely to fall significantly short of the 80% target and suggest
that current subsidy levels need re-examining. In the model, current subsidy levels appear to offer too
much support to some technologies, which in turn leads to the suppression of other technologies that
have a greater energy saving potential. The model can be used by policy makers to develop further
scenarios to find alternative, more effective, sets of policy measures. The model is currently limited to the
owner-occupied stock in England, although it can be expanded, subject to the availability of data.

& 2013 The Authors. Published by Elsevier Ltd.

1. Introduction

In 2008, the UK Climate Change Act established an 80% CO2e

reduction target to be achieved by 2050, against a 1990 base level
(TSO, 2009). Domestic energy use is responsible for 28% of total
demand, with approximately 83% of this coming from space
heating and hot water (DECC, 2011b). Significant energy efficiency
improvements will be required to the housing stock if the overall
80% target is to be achieved – principally fabric improvements
(insulation and air tightness), more efficient heating systems and
on-site renewable energy generation.

In order to plan to achieve such targets, and to develop
appropriate policies, models are used to provide a projection of
the likely impact of potential policies, or sets of policies. When

focussing on the housing sector, stock models are typically used to
analyse the effects of changes. Stock models operate with a set of
archetypal dwellings that, when taken together, aim to represent
the range of dwellings in the real world stock of interest; then, by
tracing the rate of change to the dwelling stock, emission and
energy demand reductions can be predicted. UK housing can be
split into three broad categories according to tenure. The largest of
these, accounting for over two thirds of households, is the owner-
occupier sector. In the private rental sector, individuals and
companies own dwellings, which they rent out for financial gain.
The final sector is the social rented sector where governmental, or
quasi-governmental bodies, rent out dwellings to those unable to
buy or rent in the private housing market. Due to this ownership
structure, improvements to the existing housing stock only occur
when their owners decide to carry out such improvements.

Existing stock models do not consider the micro-economic
behaviour of the individual household in carrying out their
decision making process for installing energy efficient technolo-
gies. The Agent Home Owner Model of Energy (AHOME), described
in this paper, aims to address this, concentrating on the owner-
occupier (homeowner) sector of the market. This paper provides
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a brief overview of existing stock models; discusses the develop-
ment and validation of AHOME and then presents results of
AHOME's analysis of existing government policies under various
scenarios. The effect of an additional carbon tax policy is also
investigated.

2. Existing domestic energy stock models

Existing models in the domestic housing sector principally
adopt a bottom up approach. Such models build up from a set of
representative dwellings that can be scaled up to approximate the
entire stock. In stock models, the individual unit of analysis is a
dwelling, and a model requires a representative set of reference
dwellings with different thermal characteristics (e.g. size, detach-
ment, wall type, heating system, etc.). Using an energy assessment
tool, the heating and energy demand for each of these reference
dwellings can be estimated, based on an assumed usage pattern.
Altering the proportions of the reference dwellings can simulate
the demolition of existing dwellings and the construction of new
ones. Similarly, improving the properties of the building elements
can represent retrofit improvements to the existing stock.
Together, these two actions represent real world stock changes
and can be used to determine the likely effects from such changes.
This is a technology rich approach with the potential to provide
high levels of detail, including information about the likely
adoption rates of different technological solutions under different
scenarios. This general approach has been used for a number of
models, in both the UK and the rest of the world, e.g. Shorrock and
Dunster (1997), Hinnells et al. (2007), Steemers and Yun (2009),
and Swan et al. (2011).

In order to understand the operation of these models, it is
worth examining one of them in a little more detail. A significant
model for UK analysis is UKDCM2 (Hinnells et al., 2007), which has
been used for studies such as Boardman's (2007) Home Truths
report. The model includes some 20,000 dwelling types to
represent the national stock, each of which is subjected to an
assessment of its energy demands. By applying changes, and
aggregating, national level estimates can be calculated under
different scenarios. This is the approach used by Boardman to
generate the outputs required for the Home Truths report.

Whilst current, bottom up, stock models apply a technology
rich approach to the dwelling stock, they do not do the same with
the dwelling occupants. Therefore, they do not simulate occupants'
heterogeneous decision making processes when considering
energy efficiency improvements. Without including the individual
level buying behaviour, the primary role of such models lies with
describing what is technically possible. In order to estimate the
likely uptake of any technology, there is a need to consider
adoption rates based on the expected actions of individual home-
owners. This first requires an understanding of the decision
making process of the individual householder.

3. Individual dwelling energy modelling

In order to carry out the energy assessment of the individual
dwellings in a stock model, UK based models use either the
Standard Assessment Procedure (SAP) (BRE, 2011), or its prede-
cessor BRE Domestic Energy Model (BREDEM) (Anderson et al.,
1985). SAP 2009 (introduced in 2011) is the version that has been
used for the dwelling modelling in this research.

SAP is the statutory method in the UK for the production of
Energy Performance Certificates for dwellings, which are required
on the construction, sale or let of a property. Table 1 details the

main elements that are required for a SAP calculation for an
individual dwelling.

SAP carries out a steady state estimation of the energy demand
per month to provide heating, hot water and lighting. It does this
by estimating heat flows into and out of the building: heat losses
through walls, roof, floor and windows; solar gains through
windows; and incidental heat gains from cooking, lighting, hot
water and metabolic heat gains. Physical data is combined with
standardised occupancy patterns and heating demands, together
with external weather data. For instance, the surveyor assessing a
dwelling will determine the construction type of the walls, based
on which SAP will assign a standard U-value, U (W/m2 K) for that
wall type. The surveyor will also supply the total wall area, A, and
similar figures will be recorded for the other fabric elements: floor,
roof, windows, etc. Combining these will produce the total fabric
heat loss, as in Eq. (1)

Fabric Heat Loss
W
K

� �
¼ ∑

n

j ¼ 1
AjUj Total fabric heat loss ð1Þ

SAP assumes standardised indoor temperatures, and includes
data for average external temperatures on a monthly basis. In
essence, the fabric heat loss is multiplied by the indoor/outdoor
temperature differential to calculate the power required to main-
tain the desired internal temperature. The actual SAP calculation
also includes ventilation losses and incidental gains from meta-
bolic sources, lighting, etc. This is therefore a steady state model,
calculated on a monthly basis. It also estimates hot water demand
based on the standardised number of occupants, which is calcu-
lated according to floor area, as well as lighting demand.

These net demands are then converted into gross energy demands
according to the efficiency of the appliance satisfying that demand.
This calculation will also include energy generated by any renewable
technologies installed in the home. Outputs are generated in the form
of kWh/month for the different demand types – heating, hot water
and lighting (as well as a calculation of a theoretical cooling demand,
even if there is no cooling system present). For an Energy Performance
Certificate, these elements are combined and converted into a SAP
rating from 1 to 100 based on cost per square metre. SAP provides an
estimate based on standardised occupancy patterns and so may not
exactly match the energy demand of any individual household, but
aims instead to represent a theoretical average household.

As previously mentioned, with this level of analysis of the
individual dwelling, bottom up stock models can provide a technol-
ogy rich environment that provides a lot of detail on the penetration
of many different energy efficiency technologies. However, they do
not couple this with a similar level of analysis of the decision
makers who decide when and whether to install these technologies.
Existing modelling techniques can be enhanced by including details
of the homeowner level decision making process, with regard to the
installation of energy saving measures. AHOME aims to incorporate
a simulation of the individual decision making process into a
technology rich stock model, in order to provide a novel and more
comprehensive model of this type.

Table 1
Data requirements for a RdSAP calculation.

Size Area: floor, walls, ceiling, openings
Room height, exposed wall length

Construction Age, exposed walls, exposed floors, roofs, doors, windows
Insulation Exposed walls, exposed floors, roofs, doors, windows
Heating Fuel type, efficiency, distribution system
Hot water Fuel type, efficiency
Lighting No. of incandescent, fluorescent, LED
Renewable
technologies

Power of solar hot water and photovoltaic systems, wind
turbine dimensions
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4. Model development

4.1. Agent based modelling

AHOME aims to incorporate the one off technology buying
decision making of individual householders with the technology
rich environment of a highly disaggregated stock model and,
therefore, a suitable method needs to be chosen that will facilitate
this new approach. In previous work, agent based modelling
(ABM) has been identified as the most appropriate technique to
use (Lee and Yao, 2013).

Agent based modelling is ‘a computational method that enables
a researcher to create, analyse, and experiment with models
composed of agents that interact within an environment’
(Gilbert, 2008). As such, the focus of an ABM is on the individual
constituents of a system, rather than the system as a whole. The
particular strength, and uniqueness, of an agent based approach is
that by simulating actions at the individual level, emergent
properties can be observed that could not be predicted by a
system level analysis. By way of illustration, Schelling's segrega-
tion model (1969, 1971) operated with a spatial grid, and two
types of agent. These agents would decide if they were ‘happy’ by
counting the number of neighbours of each type and then either
stay put or move based on whether they were happy in their
current location. This simple rule was sufficient to lead to
segregation patterns in the population recognisable by city plan-
ners. The observed system level segregation was a property that
emerged from the actions of individuals acting to satisfy their
own needs.

The housing market can be readily mapped into an ABM with
the dwelling stock providing the environment. The individual
homeowners, with their individual decision making processes,
become the heterogeneous agents interacting with each other and
with their environment. Some environmentally focussed ABMs
have already been developed, e.g. water saving showers (Schwarz
and Ernst, 2009); personal carbon trading (Kempener, 2009);
micro-Combined Heat and Power (Faber et al., 2010); short term
occupant behaviour (Kashif et al., 2010).

These models have typically been short on real world data and
have largely been proof of concept models, relying on assumed
behaviour for the agents; therefore such models have limited
value for real world predictions. More fully developed models can
benefit from a credible empirical base in order that their results
have validity and applicability in representing the real world.
Empirically based ABMs are only recently beginning to be devel-
oped, for example Tran (2012a,b) developed an ABM for new car
purchases. Whilst Tran's model was empirically based, with a
database for car types and a consumer survey for the purchasers,
significant simplifications were carried out that greatly reduced
the heterogeneity in both the car types and the consumer types.

Therefore, for AHOME to be useable it must be based as much as
possible on real data sources and empirically driven. It needs to
balance complexity in the model against maintaining a sufficient
level of empirical data to be capable of providing worthwhile
outputs.

In order to develop AHOME, a suitable programming platform
was required. Out of the many available options, Netlogo
(Railsback et al., 2006; Wilensky, 1999) was chosen as it is a
mature, well known and high level platform, that is ideal for
providing a spatial platform for its agents. This ties in well with a
spatially distributed housing market. AHOME has been developed
in Netlogo version 4.1.3, released in 2011.

4.2. Stock modelling

In the UK, dwellings are either owner-occupied or tenanted.
The vast majority of residential tenancies are assured shorthold
tenancies, which, after an initial period, usually of 6 months, can
be brought to an end by the landlord with 2 months' notice. This
brings limited security of tenure for tenants, who have little say on
carrying out energy efficiency improvements, beyond asking their
landlords for improvements to be carried out. Consequently,
AHOME concentrates solely on the owner-occupied sector of the
market, which accounts for approximately 67% of dwellings in
England (CLG, 2011b).

To apply SAP 2009 in modelling the thermal properties of
individual dwellings, AHOME was populated with initial stock data
from the English Housing Survey (EHS) (CLG, 2010). EHS carries
out an annual physical survey of thousands of dwellings, with
7790 owner-occupied dwellings in the 2008 data set. The follow-
ing different building elements have been identified from the EHS
data and used to describe the dwelling stock: age (4 options),
detachment (2 options), glazing (2 options), wall type (3 options),
roof insulation (4 options), heating system (9 options) and renew-
able energy generation (presence or absence of solar hot water and
solar PV). Some restrictions have been placed on the available
combinations (e.g. a flat with another dwelling above is assumed
not to be able to have solar hot water or PV, as it has no direct roof
access). This leads to a total of 7992 different combinations,
represented as 7992 different dwelling types available in the
model. The available options are detailed in Table 2.

Not all of these combinations are present in the EHS stock (e.g.
dwellings with ground and air source heat pumps) and therefore
the initial model stock of 7790 (to match the number of dwellings
in the EHS) consists of 781 different dwelling types, with several
instances of dwellings with the most common set of character-
istics. Each of the different dwelling types has been modelled in
SAP 2009 to estimate their energy demand in kWh/year. This can
be combined with the carbon intensity of the different fuels being
used to provide annual emissions for each dwelling in the model.

Table 2
Dwelling physical characteristics.

Age Detachment Glazing Wall Roof (W/m2 K) Heating SHW PV

1 Pre-1945 1 Detached 1 Full DG 1 Solid 0 None 1 Condensing boiler 1 Yes 1 Yes
2 1945–1964 2 Semi/mid terraced 2 Part DG 2 Cavity 1 U¼0.16 2 Combi-boiler 2 No 2 No
3 1965–1990 3 Flat 3 Retro-fit CWI 2 U¼0.29 3 Regular boiler
4 1990þ 3 U¼0.68 4 Oil boiler

5 Electric
6 Solid fuel
7 Community heating
8 GSHP
9 ASHP

T. Lee et al. / Energy Policy 66 (2014) 267–279 269



As with the stock models previously described, summing the
emissions from each dwelling can provide an overall figure that
represents the entire dwelling stock.

4.3. Decision making theory

The agents in an agent based model require heuristics, or a rule
set, to dictate their decision making process. In this case, the
agents represent households making one off buying decisions. The
types of products being considered have a range of features, or
attributes, that need to be considered during the decision making
process.

A range of appropriate tools, collectively referred to as multiple
attribute decision making methods, could be applied which offer
different approaches to selecting from a set of complex options
(Yoon and Hwang, 1995). Broadly, there are two approaches –

compensatory and non-compensatory. Non-compensatory meth-
ods are generally simpler in that features are considered indivi-
dually; a strength in one feature cannot be used in the assessment
of a product to make up for a weakness in another feature. In
contrast, compensatory methods aim to combine the different
features together in a range of ways; the benefits of each feature of
an option are combined to create an overall perceived value, which
can then be used to compare the different options. Having
evaluated each option, the one that provides the most perceived
value is then chosen. The challenge is therefore to determine the
value of the perceived benefits of each feature of the various
options available.

Two main data gathering approaches can be applied in deter-
mining the value of perceived benefits: revealed preference or
stated preference (Adamowicz et al., 1994). Revealed preference
relies on data from real world decisions, i.e. actual purchases. This
brings the distinct advantage of reflecting a genuine decision,
where the decision maker's own money has been used for the
purchase. However, this only provides one decision per decision
maker and it is therefore difficult to identify the underlying
components that lead to that decision. In contrast, stated pre-
ference relies on discrete choice surveys. A discrete choice survey
is typically arranged to provide respondents with a choice
between two products, and by providing repeated questions with
different features for each product, estimations can be made as to
the impact from the different underlying factors. In the case of a
technology such as a heating system, households do not buy a
system purely so that they have one, but to satisfy underlying
demands (heating to provide thermal comfort, hot water for
washing, etc.). Although stated preference is not based on real
transactions, it allows for multiple responses from each individual.
This makes it easier to identify the different sub-components that
are considered in the decision making process, and therefore the
underlying demands that are being satisfied by a particular
technology. In this way, it becomes possible to compare different
options, by weighing the effect they have in satisfying the under-
lying demands.

A common method when using discrete choice survey data is to
use a willingness to pay approach, whereby the values ascribed to
the different features of a product impact on the willingness to pay
for that particular product (Carlsson and Martinsson, 2001). This
method therefore puts a monetary value on the individual
components that make up a product, typically via a discrete choice
survey. This is essentially the same as a multiple criteria decision
making process using simple additive weighting (Zhou et al.,
2006). There are several similar approaches that are dependent
upon the results from a discrete choice survey that allow for an
estimation of the value ascribed to sub-components of a product.
By doing this, a total utility value for a product can be obtained

and this can be compared with the utility of competing products
to determine an individual's preferred option.

4.4. Modelling householder decision making

The previous section indicates that discrete choice surveys are a
preferable method for estimating the weights to be applied here to
the factors influencing a buying decision. There is a need to
identify suitable data sets that will allow for a simulation of the
decision making process of individual households as they consider
making energy efficiency improvements to their homes. The most
suitable data sets identifiable for this were from discrete choice
surveys carried out in 2008, one by the Energy Saving Trust (EST)
(EST, 2009) for the Department of Energy and Climate Change
(DECC) and one by Element Energy (EE) (Element Energy, 2008)
for the Department of Business, Enterprise and Regulatory Reform
(BERR). EST canvassed 2019 owner-occupiers in England and EE
included 1171 English homeowners. Both surveys provided
respondents with a number of scenarios. Based on the responses,
the impact of different factors can be estimated. These factors
include cost, savings, maintenance costs, disruption, incentives
and subsidies, and the effect of recommendations.

By combining the two data sets, it has been possible to produce
a simple additive weighting algorithm to estimate the utility value
of different options, as shown in Eq. (2) (Zhou et al., 2006):

VðAi Þ ¼ ∑
n

j ¼ 1
wjvjðxijÞ i¼ 1; 2; 3; …; m Utility algorithm ð2Þ

In this equation, the utility of alternative A is the sum of the weight
applied to the various attributes of that particular alternative, w is
the weight applied to each attribute, and v(x) is the value (or
performance) for each attribute. For each respondent, EST pro-
vided a utility value for maintaining the status quo and not
installing a technology. For a particular alternative to be selected
it needs to have a higher utility value than any alternative option
and to have a higher utility than the status quo option.

The EST data separated the respondents into seven groups
corresponding to the seven clusters identified by DEFRA (2008)
according to their environmental willingness. DEFRA's most pro-
environmental cluster were the ‘Positive Greens’, the people most
likely to engage with a green agenda; whilst at the other end were
the ‘Honestly Disengaged’ who were least inclined to engage in
energy efficient or pro-environmental behaviours. In order to
provide a heterogeneous population, the values were clustered
into seven groups corresponding to these seven clusters. Indivi-
dual agents' values were distributed around the centre point for
their respective clusters. In this way, each individual agent, whilst
using the same decision making process, has its own unique
weightings to apply; for instance, one agent may value a d1 saving
on energy bills as worth an upfront cost of d3, whereas the next
agent may value such a saving as worth d3.25 up front. These
individual differences mean that each decision making process
will be unique as both the housing stock and the individual
household agents have distinct properties.

Having set up the householder agents' decision making algo-
rithm, it is necessary to determine the trigger points that will lead
to a decision taking place. EST research (2011) indicates the likely
trigger points for an energy efficiency improvement decision. To
approximate this in the model, moving home and boiler break-
down are used as the triggers for decision making. Based on the
EST research, in each model year 7% of agents are randomly chosen
to move home, and heating systems have been given a randomly
distributed life cycle with an average 15 year lifetime. House
moving triggers a consideration of all available improvements,
whilst heating system failure simply triggers a search for a
replacement heating and hot water system, without looking at
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the other measures that may be possible in that particular
dwelling.

4.5. Model validation

At this stage, the model was based solely on stated preference
data from the two surveys, as opposed to revealed preference from
real world decision making. It can be anticipated that there will be
differences between the stated preferences given in a discrete
choice experiment and the true revealed preferences when a
decision maker faces the decision in the real world.

With prediction models, validation is often an issue as there is
no real world data available against which to compare a model's
outputs. This is then clearly an issue for any model aiming to
predict energy and emissions forward to 2050. Windrum et al.
(2007) discuss possible validation and calibration methods that
are available, with an emphasis on calibration by comparison with
empirical data. They identify a limitation with empirical validation,
in that reliable empirical data is frequently not available, or is only
available for a limited number of a model's outputs. Nevertheless,
empirical calibration is required in order to provide the model
with more credibility.

In order to calibrate AHOME, it was run backwards from 2008
to 1996 to compare with historic installation rates for loft insula-
tion and cavity wall insulation (only these items were used as they
had the most reliable historical data). This allowed for a compar-
ison between the stated preferences from the survey data and the
revealed preferences according to the penetration of the different
technologies over that 12 year period. At this stage, a relatively
good fit was observed with R2 values of 0.9563 for loft insulation
and 0.7801 for cavity wall insulation, indicating that the stated
preferences were relatively close to the real world decisions.

By altering the weighting in the agents' algorithm, it is possible
to adjust the likelihood of the adoption of a technology. The
simplest ways to do this were by adding a constant to the utility
and by applying a scaling factor to the EST status quo utility value.
Repeated runs with different values for these two calibration
factors improved the goodness of the fit and achieved R2 values
of 0.9584 and 0.9068 for cavity wall insulation and loft insulation
respectively when comparing model data with data from the
English House Condition Survey for the available years back to
1996. This demonstrated that the model was providing a good
simulation of historic outcomes and could start to be used for
future projections and scenario and policy analysis.

4.6. User controls and outputs

AHOME is designed to analyse policy effectiveness to 2050 (or
any other year of interest) and has a number of controls for end-
user input. These controls allow for the setting of inflation rates,
subsidies, taxation, population growth, demolition, etc. By adjust-
ing these inputs, it is possible to analyse an almost limitless
number of different scenarios. Having designed a scenario, it can
be run in the model to generate output files.

The main output from the model is raw data detailing many
items including annual CO2 emissions and energy demand. It also
records the annual installations of the various technologies,
together with the costs to the government of any subsidies, and
the income from any carbon tax being levied.

4.7. Model summary

Fig. 1 provides a graphical framework of the model's operation.
As Fig. 1 shows, the central component of the model is the

decision making process, which happens at the level of the
individual agent. The model will trigger this process each year,

as a number of agents will move home, and a number of heating
systems will break down. The agent then refers to the Dwelling Stock
Database and the Improvements Database for details on the technol-
ogy in their dwelling and the options available for improvements.
The decision making process is then further impacted by recom-
mendations from neighbours and the impact of any policy measures.
The output of the decision making process is the selection (if any) of
new technologies to install in the home. These installations then lead
to altered energy demand and related CO2 emissions. This process is
repeated thousands of times during a model run, as each year 7% of
agents move home and 1 in 15 heating systems fail.

4.8. Model capabilities and limitations

As previously mentioned, the model is currently limited to the
English homeowner stock. This is in order to concentrate on
simulating the energy investment decision making of the home-
owners, which is not captured in existing models. Broadly compar-
able changes could be made to the non-owner occupied stock, but
the decision making processes in those cases will be different.

As a stock model, the focus is on the fabric, heating and hot
water systems, and micro-renewable generation, and changes to
these building elements. The model is therefore limited to the SAP
estimates of energy demand (and supply) due to these items. As
such, it is not considering appliance usage. Since the model is SAP
based it is not capturing potential changes in behaviour that might
reduce demand (e.g. reducing thermostat settings), and conver-
sely, it is not modelling uptake of technologies that might increase
demand (e.g. new appliances, air conditioning).

In an attempt to balance complexity and realism, a number of
assumptions and limitations have been made. A flat with another
dwelling above is assumed not to be able to have solar hot water
or PV (i.e. only one flat – the top floor one – can benefit from such
measures). After 2016, heating systems for new dwellings are
restricted to heat pumps, community and bio-fuel systems. Retro-
fitting insulation to solid walls improves them to the same level as
retrofitting an equivalent cavity wall. It is also not possible to
predict what new technologies may become available, or how the
efficiency of current technologies may change over time; instead,
the highest efficiencies currently available in SAP have been used
to provide generic technology data.

The model is capable of providing estimates of future energy
demand and associated emissions. It can also provide lower level
data concerning the uptake of different technologies, as well as the
cost effectiveness of different economic policy measures intended
to influence the decision making process. The model is also
designed so that different scenarios and different sets of policy
measures can be analysed in order that effective solutions can be
identified.

5. Scenario design

The model has around 40 variables, each of which can take one
of a range of values that can be changed for each year of a model
run (with a typical run being 42 years (2008–2050)). This high
dimensionality leads to an unmanageable number of potential
scenarios that is in excess of 1030. It is wholly impractical to run all
of these potential scenarios, or even a very small percentage.
Instead, a method is required to determine which scenarios should
be analysed. There are two related approaches to doing this, the
first being simply to lay out all the potential scenarios graphically
(a mathematical multi-dimensional space is required with one
dimension for each variable), impose a grid over the scenarios and
then select one scenario from each grid square (Flood and
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Korenko, 2010). Whilst this approach is understandable and would
achieve a representative selection, with the sheer number of
potential scenarios available such a selection could quite easily
miss plausible scenarios that should be considered. A related
method is to use Delphi – this is a system designed to canvas
and refine expert opinion (Linstone and Turoff, 1975; Yang et al.,
2010) and to carry out cluster analyses of the suggested pathways
to generate aggregate scenarios suitable for study (Tapio, 2003).
For this research, the approach taken is closer to the Delphi
approach. An initial scenario has been developed as a Business
as Usual (BAU) case that aims to represent current government
policy and projections, based on a number of available data
sources (ONS, 2011; CLG, 2011a; DECC, 2012; EST, 2012; Friends
of the Earth, 2010; Committee on Climate Change, 2011; Jenkins
et al., 2009). Table 3 summarises the main settings used for the
initial BAU simulation run.

As well as this basic scenario, additional scenarios were
produced and simulated with slight variations from the original
BAU. Since it is not possible to consider all the potential scenarios,
just three variables are changed to produce the alternative
scenarios. The first variable to be changed is grid decarbonisation.

The Renewable Energy Review (CCC, 2011) recommends 90% grid
decarbonisation by 2030, which has been set as the base line
assumption in the BAU scenario. However, there are political
disagreements over this target (Economist, 2012), therefore an
alternative with no grid decarbonisation is provided; whilst this
may seem an extreme variation it gives an indication of the extent
to which grid decarbonisation can contribute to domestic emis-
sions reductions. The second option included in this paper is a
carbon tax, which has been set at an initial level that approximates
to a 20–25% increase in electricity prices. The final option is to
withdraw all the subsidies – again, this may seem extreme – but it
can give a useful indication of the cost effectiveness of current
subsidy levels. Even just using two options for these three
variables give eight potential scenarios, as detailed in Table 4.

6. Results

Each of the eight scenarios detailed in the previous table was
run in AHOME 12 times, so that runs could be averaged out to
allow for random variations and the potential for an outlier
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Fig. 1. The framework of the model.
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Table 3
Business as usual scenario assumptions.

2008–2009 2010–2011 2012 2013 2014–2015 2016–2020 2021–2025 2026–2030 2031–2035 2036–2040 2041–2045 2046–2050

Upfront subsidies (d)
PV-grant 2500 2500
Solar-grant 300 300 300
Heatpump-grant (GSHP) 1250 1250 1250
ASHP-grant 850 850 850
Solid wall grant 1500 1500 1500 1500 1500 1370 1175 1010 870 745 640 550
Loft grant 250 250 250 250 250 250 250 250 250 250 250 250
Cavity grant 250 250 250 250 250 250 250 250 250 250 250 250
Boiler grant 400
Biofuel-grant 950 950 950

Generating subsidies (p/kWh)
PV-FIT 43 21 13 10 6 4 4 4 4 4 4
RHI-solar 8.5 8.5 8 7 6 5 4 3 3
RHI-heatpump (GSHP) 4.3 4.3 4 3.4 2.9 2.5 2.1 1.8 1.8
RHI-ASHP 3 3 2.6 2.2 1.9 1.6 1.4 1.2 1.2
RHI-biomass boiler 7.6 7.6 7 6 5.2 4.5 3.9 3.4 3.4

Annual population growth
Construction rate (%) 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.6
Demolition rate (%) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Fuel Inflation (%)
Oil 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
Gas 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Solid fuel 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Grid electricity 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9

Annual grid decarbonisation (%) 11 11 11 11 11 11

5 Yearly average temperature rise (1C) 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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simulation. The headline results, in terms of CO2 reduction, are
shown in Figs. 2 and 3.

To complement Figs. 2 and 3, Table 5 provides the average
reductions for each scenario.

None of these scenarios gets close to achieving an 80% reduction.
It should be noted that these reductions are from 2008 to 2050,
whereas the target is from a 1990 base. However, this does not
significantly reduce the outcomes as the historic reduction achieved
from 1990 to 2008 was approximately 5.5% (DECC, 2011a).

It can also be seen that grid decarbonisation has an important
role to play, as the non-decarbonised scenarios achieve reductions
at least ten percentage points less than the equivalent decarbo-
nised scenarios. Furthermore, it can be seen that grid decarbonisa-
tion has a significant impact on the effectiveness of a carbon tax:
BAU-Tax achieves around ten percentage points more than BAU,
but BAU-NoDecarb-Tax only achieves around two percentage
points more than BAU-NoDecarb. These differences are due to
the impact on heat pump costs: when carbon is taxed and grid
electricity is decarbonised heat pumps become a more attractive

technology. However, without grid decarbonisation, their carbon
tax is of the same order of magnitude as condensing boilers, so
there is less incentive to adopt the lower carbon technology.

Arguably, the most surprising headline results concern the
presence or absence of subsidies. In the graphs, the effect is most
clear with BAU and BAU-NoSub in Fig. 2, in that the scenario runs
without any subsidies achieved greater CO2 reductions than the
scenarios with subsidies intended to encourage uptake of energy
saving technologies. For three out of the four pairs of scenarios, the
subsidy free scenario achieves a greater reduction by 2050 than
the equivalent subsidised scenario. As the standard deviation of
each set of runs is quite small, these are statistically significant
results (po0.0001, in each case). Only for BAU-Tax and BAU-Tax-
NoSub does the subsidised scenario achieve a larger reduction,
although this result does not quite achieve statistical significance
(p¼0.055), and even a statistically significant difference of 0.4%
would not be an endorsement of the current subsidy regime.
Clearly, this is a very counter-intuitive result, which needs further
investigation to determine the cause.

Fig. 2. CO2 BAU, BAU-NoSub, BAU-NoDecarb, and BAU-NoDecarb-NoSub.

Table 4
Summary of selected scenarios.

Scenario Subsidies Grid decarbonisation by 2030 CO2 tax (p/kg CO2)

BAU Normal 90% 0
BAU-Tax Normal 90% 5 (þ5% pa indexation applied 5 yearly)
BAU-NoDecarb Normal 0 0
BAU-Tax-NoDecarb Normal 0 5 (þ5% pa indexation applied 5 yearly)
BAU-NoSub None 90% 0
BAU-Tax-NoSub None 90% 5 (þ5% pa indexation applied 5 yearly)
BAU-NoDecarb-NoSub None 0 0
BAU-Tax-NoDecarb-NoSub None 0 5 (þ5% pa indexation applied 5 yearly)
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In order to do this it is necessary to look at the underlying
changes in the stock that lead to the headline reductions. Amongst
the other data that the model records are the technology penetra-
tion levels and the CO2 savings achieved by each technology. Fig. 4
provides the heating system penetration levels for condensing
boilers (Cond), ground source and air source heat pumps combined
(HP), solid/bio-fuel systems (Solid/Bio) and insulation measures
combined (Insulation) for the BAU and BAU-NoSub scenarios:

The model starts with an initial population of 7790 so the
number of installations detailed here refers to the actual numbers
of installations in the model. Initially, in 2008, the majority of
heating systems (5496) are non-condensing gas boilers, thus the
initial uptake of condensing boilers is the replacement of the non-
condensing systems.

The BAU scenario includes subsidies designed to encourage the
uptake of biomass and both ground and air source heat pumps.
However, the results presented above suggest that those technol-
ogies are better able to compete for market share in the subsidy-

free scenario, where there is more of a decline in condensing
boiler numbers. This is not an outcome that would be expected
(that a technology is less successful when subsidised); never-
theless it can be explained by looking at the combined insulation
figures. Without subsidies, the total number of insulation mea-
sures is reduced, and with a less well insulated fabric a heating
system needs to work harder to satisfy the subsequently larger
heating demand. Therefore, when there is a larger heating
demand, the savings possible from a more efficient heating system
are greater and this consequently favours heat pumps and biomass
over gas. Alternatively, when a dwelling is well insulated, the
heating demand is less and therefore the potential savings from an
innovative heating system are less, such that more individuals
choose to remain with gas heating. This result is similar to Faber
et al.'s (2010), where they found that the adoption of micro-CHP
was suppressed when they improved the fabric of the dwellings.
However, the findings in this research are with a heterogeneous
stock of both dwellings and occupants, and are empirically based,
as far as possible.

To complement the data presenting the number of installa-
tions, the model also records the CO2 saving per installation (this is
just the saving in the year of installation, as opposed to the saving
over the expected lifetime of the technology). Fig. 5 presents the
savings per technology type for the BAU scenario (the renewables
being solar PV and solar hot water).

This further confirms that the majority of the savings come
from the initial move to condensing gas boilers, and it is not until
the late 2020s that the other technologies begin to provide the
majority of the CO2 savings. It can also be seen that the contribu-
tion from insulation measures is gradually falling over time – this
is because the number of poorly insulated houses is steadily
decreasing and so the available savings are reducing.

Fig. 3. CO2 BAU-Tax, BAU-Tax-NoSub, BAU-NoDecarb-Tax, and BAU-NoDecarb-Tax-NoSub.

Table 5
Scenario average CO2 reductions by 2050.

Scenario % CO2 reduction Standard deviation

BAU 48.5 0.2
BAU-NoSub 50.9 0.2
BAU-NoDecarb 38.2 0.3
BAU-NoDecarb-NoSub 39.7 0.3
BAU-Tax 59.4 0.3
BAU-Tax-NoSub 59.0 0.4
BAU-NoDecarb-Tax 40.0 0.3
BAU-NoDecarb-Tax-NoSub 41.4 0.2
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As well as the CO2 savings provided by the different technol-
ogies, the model also records cost effectiveness of subsidies per
technology in terms of d/kgCO2. Some of the subsidies are
generation subsidies, which provide a subsidy in pence per
kilowatt-hour of energy produced; these future costs are simply
converted into a current cost using a net present value calculation
and a discount rate of 3.5% (HM Treasury, 2003). In the same way
as the CO2 savings per technology previously presented, the cost
effectiveness has been based on just a single year's CO2 saving, as
opposed to the entire expected lifetime of the technology.
Figs. 6 and 7 detail subsidy cost effectiveness for the BAU scenario.

It can be seen that there is essentially an order of magnitude
difference between the two sets of subsidies; there is therefore a
wide variety of cost effectiveness in the current subsidies for the
different measures available. There are also significant changes
over time, not only due to changes in the subsidy levels, but also
due to changes in the dwelling stock. For example, the cost
effectiveness of cavity wall and loft insulation reduces over time,
as the most cost effective improvements have generally already
been installed in the earlier years, so the remaining dwellings have
less to gain from the insulation measures.

7. Conclusions

Current government domestic energy efficiency policy has
been analysed using the AHOME model, together with alternative

scenarios varying the taxes, subsidies and grid decarbonisation.
The results of this analysis suggest that current policies will fall
well short of the domestic sector being able to achieve the 80%
reduction target by 2050. The most favourable conditions achieved
a reduction of less than 60% from 2008 to 2050. Whilst it is not
essential for every sector to achieve 80%, as long as the overall
target is achieved, any sector that does fall short would have
implications for other sectors. Here, industry and transport would
be required to achieve greater reductions to make up the short fall.
It should also be noticed that AHOME found potential for much
greater improvements based on the spare capacity for further
improvements. This is in line with existing bottom up models that
can identify the theoretically and technically possible. However,
the model suggests that current policies are not sufficient to
encourage such wide scale adoption of technologies.

The scenarios presented have illustrated the advantages of an
agent based approach and the resultant emergent properties that
would not be predicted by a traditional model. In particular, the
finding that current subsidy levels could act as a disincentive is an
unexpected, but important finding. This has implications for policy
makers that suggest a need to reconsider the setting of subsidy
levels and consider the knock-on effects and the interactions
between technologies.

Care needs to be taken to ensure that a policy favouring one
technology does not have a knock-on effect of subsequently
reducing the take up of another technology with the potential to
provide greater savings. As the model can provide detail rich

Fig. 4. BAU and BAU-NoSub technology installations.
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Fig. 6. BAU Subsidy cost effectiveness – high cost measures.

Fig. 5. CO2 savings per technology type.
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outputs, it offers potential for policy makers to re-examine subsidy
setting; by adjusting current subsidy levels, a more effective
solution can be sought.

One new policy that has been briefly explored in this paper is
the addition of a carbon tax, which, at the level tested here has a
noticeable impact in reducing energy demand towards the later
years of the scenario runs. However, the use of such a policy may
be hard to achieve politically for a number of reasons. Firstly, there
is a concern in the UK over fuel poverty – which is defined as any
household spending 10% or more of its income on heating and hot
water. The imposition of a tax will artificially increase energy
prices and therefore may take more people into fuel poverty.
Conversely, as a tax, this is a revenue raising policy, and there
would therefore be the opportunity to target some of the money
raised into improving the energy efficiency of the stock occupied
by those in fuel poverty. In addition, as a tax, politicians would
need to consider the best way to be able to market the policy so
that it would be accepted by voters, as raising taxes is typically an
unpopular political move. As well as targeting the revenues raised
on the fuel poor, it would also be possible to use them to enhance
the subsidy levels provided more generally in a further effort to
encourage greater adoption of energy saving technologies across
the entire housing stock. Frank (2011) suggests that such an
approach – of using the tax in a redistributive manner – may be
an appropriate approach, and a similar suggestion was made by
Green Fiscal Commission (2009). Should a policy maker decide to
explore such options in more detail, AHOME would be an appro-
priate tool, as it records details of both subsidy cost and tax.
Therefore, a policy maker could run many scenarios and apply
small changes to arrive at a cost neutral solution, or to estimate
the revenue generating capacity of different scenarios.

Finally, it needs to be remembered that whilst AHOME has
been validated as much as possible against available data, it can be
updated and recalibrated as more real world data becomes
available. This will ensure it successfully projects the expected
trends under different scenarios. Such updating will therefore be
able to make it a useful tool for policy makers.
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