67 research outputs found

    Nurses’ Perception Toward Workplace Violence at Dammam Medical Tower, Saudi Arabia

    Get PDF
    Context: Male and female nurses face violence in their workplace because of daily exposure to challenging situations as a result of dealing with different types of patients, visitors, and their families.Aim: The study aimed to assess nurses' perceptions toward workplace violence at Dammam Medical Tower, Saudi Arabia.Methods: A quantitative descriptive cross-sectional design was used to conduct this study. The sample size consisted of 300 nurses working at Dammam Medical Tower using a convenient sampling technique from January to March 2019 and using a modified tool obtained from ‘Survey on Workplace Violence’ by Massachusetts Nurse’s Association. Results: The most common workplace violence for the last two years was verbal abuse and threatening. Additionally, sexual assault was less violent in the workplace. Around one-third of nurses reported all incidents to management, and less than half of them stated that the management was supportive and tried to find a solution. However, only 10% of them underwent related training regarding workplace violence prevention. Also, more than a quarter of nurses reported that a clear policy and procedures addressing violence are needed to combat violence in the workplace. There is a significant difference between nurses who work in outpatients or emergency departments and total violence incidents. Conclusion: Verbal abuse and threatening are deemed to be the most common violence being occurred in the workplace, while patients and relatives are the commonest offenders. The administration of the workplace should develop a clear policy to address the violent act in work and enhance the violence concept in the orientation courses

    Solar Disinfection of Drinking Water with Polyethylene Terephthalate Bottles Coated with Nano-Titanium Dioxide

    Full text link
    Water disinfection processes in the presence of titanium dioxide as a photo-catalyst material provide an interesting route to destroy contaminants, being operational in the UV-A domain with a potential use of solar radiation. In recent years, advanced oxidation processes (AOP) have been developed to meet the increasing need of an effective wastewater treatment. AOP generates powerful oxidizing agent hydroxyl radicals which completely destroy the pollutants in waste water. Solar disinfection of drinking water with polyethylene terephthalate (PET) bottles coated with photo-catalyst TiO2 has been shown to be very effective. The study is based on comparison between three systems for treating contaminated water samples using PET bottles. First system was a PET untreated bottle, the second system was a PET bottle coated with black paint on its outer surface. Finally the third system was a PET bottle coated also with a black coat on its outer surface and its inner part was treated with citric acid solution to enable np-TiO2 to cover the surface later on, then 0.2 g of np-TiO2 powder (of particle size <25 nm, Sigma-Aldrich) was added. The total bacterial accounts were determined to monitor the effect in the three systems. The experimental results have shown that disinfecting water with merely UV was less effective than combining the bottle with heat effect, and adding TiO2 film was further more benefited. This work can be applied in rural areas, with no technical support or need for expensive/dangerous chemicals for drinking safe water even if is stored for two days

    Experimental investigation on compression ignition engine powered with pentanol and thevetia peruviana methyl ester under reactivity controlled compression ignition mode of operation

    Get PDF
    In the current study, an effort is carried out to study the influence of pentanol as low reactive fuel (LRF) along with diesel and Thevetia peruviana methyl ester (TPME) as high reactive fuels (HRF) in reactivity controlled compression ignition (RCCI) engine. The experiments are conducted on dual fuel engine at 50% load for RCCI mode of operation by varying pentanol percentage in injected fuels. The results revealed that RCCI mode of operation at 10% of pentanol in injected fuels exhibited higher brake thermal efficiency (BTE) of 22.15% for diesel and pentanol fuel combination, which is about 9.1% and 27.3% higher than other B20 and pentanol, B100 and pentanol fuel combinations respectively. As the percentage of pentanol increased in injected fuels, hydrocarbon (HC) and carbon monoxide (CO) emissions are increased while nitrogen oxide (NOx) and smoke emissions are decreased. Among various fuel combinations tested diesel and pentanol fuel combination gives lower HC, CO and smoke emissions and higher NOx emissions. At 10% pentanol in injected fuels, the highest heat release rate (HRR) and in-cylinder pressure are found for diesel and pentanol fuel combinations compared with other fuels

    Microscopic characteristics of biodiesel – Graphene oxide nanoparticle blends and their Utilisation in a compression ignition engine

    Get PDF
    Use of nano-additives in biofuels is an important research and development topic for achieving optimum engine performance with reduced emissions. In this study, rice bran oil was converted into biodiesel and graphene oxide (GO) nanoparticles were infused into biodiesel-diesel blends. Two blends containing (i) 5% biodiesel, 95% diesel and 30 ppm GO (B5D95GO30) and (ii) 15% biodiesel, 85% diesel and 30 ppm GO (B15D85GO30) were prepared. The fuel properties like heating value, kinematic viscosity, cetane number, etc. of the nanoadditives–biodiesel-diesel blends (NBDB) were measured. Effects of injection timing (IT) on the performance, combustion and emission characteristics were studied. It was observed that both B15D85GO30 and B5D95GO30 blends at IT23° gave up to 13.5% reduction in specific fuel consumption. Compared to diesel, the brake thermal efficiency was increased by 7.62% for B15D85GO30 at IT23° and IT25°. An increase in IT from 23° to 25° deteriorated the indicated thermal efficiency by 6.68% for B15D85GO30. At maximum load condition, the peak heat release rates of NBDB were found to be lower than the pure diesel at both IT. The CO, CO2 & NOx emissions were reduced by 2–8%. The study concluded that B15D85GO30 at IT23° gave optimum results in terms of performance, combustion and emission characteristics

    Hydrogen injection in a dual fuel engine fueled with low-pressure injection of methyl ester of peruvenia thevetia [MEPT] for diesel engine maintenance application

    Get PDF
    The present work is mapped to scrutinize the consequence of biodiesel and gaseous fuel properties, and their impact on compression-ignition (CI) engine combustion and emission characteristics in single and dual fuel operation. Biodiesel prepared from non-edible oil source derived from Thevetia peruviana belonging to the plant family of Apocynaceaeis. The fuel has been referred as methyl ester of Thevetia peruviana (METP) and adopted as pilot fuel for the effective combustion of compressed gaseous fuel of hydrogen. This investigation is an effort to augment the engine performance of a biodiesel-gaseous fueled diesel engine operated under varied engine parameters. Subsequently, consequences of gas flow rate, injection timing, gas entry type, and manifold gas injection on the modified dual-fuel engine using conventional mechanical fuel injections (CMFIS) for optimum engine performance were investigated. Fuel consumption, CO, UHC, and smoke formations are spotted to be less besides higher NOx emissions compared to CMFIS operation. The fuel burning features such as ignition delay, burning interval, and variation of pressure and heat release rates with crank angle are scrutinized and compared with base fuel. Sustained research in this direction can convey practical engine technology, concerning fuel combinations in the dual fuel mode, paving the way to alternatives which counter the continued fossil fuel utilization that has detrimental impacts on the climate
    corecore