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A B S T R A C T   

In the current study, an effort is carried out to study the influence of pentanol as low reactive fuel 
(LRF) along with diesel and Thevetia peruviana methyl ester (TPME) as high reactive fuels (HRF) 
in reactivity controlled compression ignition (RCCI) engine. The experiments are conducted on 
dual fuel engine at 50% load for RCCI mode of operation by varying pentanol percentage in 
injected fuels. The results revealed that RCCI mode of operation at 10% of pentanol in injected 
fuels exhibited higher brake thermal efficiency (BTE) of 22.15% for diesel and pentanol fuel 
combination, which is about 9.1% and 27.3% higher than other B20 and pentanol, B100 and 
pentanol fuel combinations respectively. As the percentage of pentanol increased in injected fuels, 
hydrocarbon (HC) and carbon monoxide (CO) emissions are increased while nitrogen oxide (NOx) 
and smoke emissions are decreased. Among various fuel combinations tested diesel and pentanol 
fuel combination gives lower HC, CO and smoke emissions and higher NOx emissions. At 10% 
pentanol in injected fuels, the highest heat release rate (HRR) and in-cylinder pressure are found 
for diesel and pentanol fuel combinations compared with other fuels.   
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1. Introduction 

With the improvement in the world’s economy, the interest in raw petroleum is developing at a swift pace. The random utilization 
of fuel sources has led to an upsurge in GHG emissions, depletion of fossil fuels, increase in respiratory problems. These elements have 
led to the utilization of non-conventional energy [1–4]. The diesel engines inspire the researchers for their efficient mileage with 

higher CR [5,6]. Nevertheless, diesel engines experienced shows higher particulate matter and NOx emissions [7]. The premixed 
charge compression ignition (PCCI) has resulted in expanding considerations in recent years because of lower emissions and higher 
efficiency. In the PCCI mode of combustion, the particulate matter could be diminished with an advanced blending of fuel and air 
before ignition [8]. The NOx emissions were diminished by utilizing lean fuel and air mixture with a high exhaust gas recirculation rate 
(EGR) to reduce combustion temperature. As a result of higher combustibility and lower volatility of the diesel fuel, few issues have to 
be explained for the PCCI mode of combustion, including the homogeneous blend formation, ignition control, restricted working, high 
impingement to the walls of the combustion chamber, etc. [9,10]. To beat these issues related to the PCCI mode of combustion, RCCI 
mode of combustion has been developed recently, a viable and clean-burning system that utilizes two types of fuels with various 
physical properties and separate injection. The reactivity could be grouped into global reactivity, and the other is termed as reactivity 
gradient [11]. The global reactivity is controlled by using the fuel types along with the number of fuels injected into the combustion 
chamber. The reactivity gradient differs from the fuel injection methodology, including early and late addition of high and low octane 
number fuels. Thus, each fuel injection technique and injection rate could affect the RCCI mode of combustion [12,13]. Fuels with 
higher octane number (ON) were injected into a suction manifold, and the fuels with a high cetane number (CN) were injected into the 
combustion chamber so that a well-defined formation of the fuel reactivity was framed that prompts stratified burning [14]. Duraisamy 
et al. [15] found that the use of polyoxymethylene dimethyl ethers (PODE) as a high reactivity fuel (HRF) with the methanol as a low 
reactivity fuel (LRF) for RCCI combustion resulted in combustion duration shorter and reduced delay period as compared with 
methanol-diesel RCCI mode of combustion. Pan et al. [16] found that indicated mean effective pressure (IMEP) for iso-butanol-diesel, 
gasoline-diesel RCCI combustion considerably increased as the ratio of premixed combustion augments. IMEP in the case of 
iso-butanol-diesel fueled RCCI engine was constantly higher than gasoline-diesel RCCI mode of combustion at any premixed ratio. 
Yang et al. [17] found that diesel and methane injection timing (IT) had impact on the process of combustion for RCCI engine. An 
improved performance could be found for earlier diesel IT and later methane IT. Wang et al. [18] found that, thermal efficiency for 
gasoline-PODE fueled RCCI engine could be efficiently enhanced with air intake and dilution of EGR. The dilution of air for stable 
intake pressure showed results on thermal efficiency improvement. Zheng et al. [19] found that at medium and low loads, the RCCI 
showed a lower heat release rate (HRR). The indicated thermal efficiency of the engine reduced as the ratio of n-butanol was increased. 
Charitha et al. [20] found that NOx emissions were decreased significantly by introducing cotton oil methyl ester (COME). The HC 
emissions were reduced at lesser proportions of COME, and these emissions were increased along with higher proportions of COME. 
Isik et al. [21] found that ethanol-fueled RCCI engine increased the peak values of pressure using B50 blend as HRF. The curves of HRR 

Nomenclature 

BSEC Brake specific energy consumption 
BSFC Brake specific fuel consumption 
BTE Brake thermal efficiency 
CO Carbon monoxide 
COME Cotton oil methyl ester 
CR Compression ratio 
CN Cetane number 
CRDI Common rail diesel injection 
ECU Electronic control unit 
EGR Exhaust gas recirculation 
HC Hydrocarbon 
HRF High reactive fuel 
HRR Heat release rate 
IMEP Indicated mean effective pressure 
IP Injection pressure 
IT Injection timing 
LRF Low reactive fuel 
NOx Nitrogen oxide 
ON Octane number 
PCCI Premixed charge compression ignition 
PODE poly oxymethylene dimethyl ethers 
RCCI Reactivity controlled compression ignition 
TPME Thevetia peruviana methyl ester  
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increased for ethanol-fueled RCCI engine for all fuels tested. Thiyagarajan et al. [22] found that BTE was higher for the engine with 
n-pentanol than methanol-fueled engine operation. Brake specific energy consumption (BSEC) was lesser in dual fuel mode when 
compared with neat biodiesel engine operation, and it was more than diesel. Radheshyam et al. [23] found that the delay period 
increased for all the fuel blends as the increase of EGR rate and pentanol concentration increased. The in-cylinder pressure decreased in 
case of 1-pentanol addition for minor loads and increased at major loads. Chen et al. [24] found that, diesel-n-pentanol-methanol 
blended fuels had shorter combustion duration and longer ignition delay resulted into additional HRR as compared with diesel. 
The diesel-n-pentanol-methanol blended fuels show lower emissions of soot than diesel, also higher NOx emissions were produced. 
Huang et al. [25] found that, adding n-pentanol resulted into increased HRR and quickens the speed of combustion, shorten the 
duration of combustion. Brake specific fuel consumption (BSFC) was increased as the increase in EGR rate. Tian et al. [26] found that, 
adding n-butanol with gasoline would reduce the exhaust gas temperature of the engine as compared with pure gasoline. BTE and 
volumetric efficiency at low and medium engine speeds could be improved by n-butanol-gasoline blended fuels and pure n-butanol 
compared to pure gasoline. Adding n-butanol with gasoline could reduce the engine emissions of CO and NOx. 

The extensive literature review revealed that experimentation for the use of pentanol and Thevetia peruviana methyl ester in RCCI 
mode to study its performance is not carried out with the various percentages of pentanol in injected fuels. Hence, the current in-
vestigation’s main objective is to study the combustion, performance, and emission characteristics of RCCI engine powered with 
pentanol and Thevetia peruviana methyl ester fuel combinations for various percentages of pentanol in injected fuels. 

2. Physical properties of test fuels 

Thevetia peruviana, known as yellow oleander or lucky nut or milk bush, is a little perpetual and evergreen and, for its most part, 
developed as a decorative plant. It is a dicotyledonous bush and has a place with the family Apocynaceae [27]. The fuel properties used 
are presented in Table 1. 

2.1. Thevetia peruviana (Yellow oleander) 

Thevetia peruviana is ordinarily found in the world’s jungles and sub-jungles locations, yet it is local to Central and South America. 
The plant gives the fruits consistently, giving a consistent supply of seeds. The plant, developed as supports, can create 400 to 800 fruits 
for each annum, relying upon the plant’s age. Flowers were like funnel-shaped, with their petals were spirally twisted. Fruits were 
fairly globular, and they had fleshy mesocarp and had 4–5 cm diameter. Fruits that had green color shading and became dark on aging. 
Every fruit contains a nut that is transversely and longitudinally divided. Matured fruit contained 2 to 4 seeds, and the plant bears 
milky juice at all parts [27]. The plant developed to around 2–6 m in tall, and leaves are spirally arranged, direct, and around 13–15 cm 
long [28]. Thevetia peruviana is a plant with no financial worth, under-utilized and lesser-known [29,30]. The seed contains 60–65% 
of oil, and the cake contained 30–37% protein [29,31]. The oil would be non-edible due to cardiac glycoside present in it. The seed has 
a health benefit and would thus be able to be utilized as an elective protein source in the creature feed plan [32]. It will decrease rivalry 
among humans and animals for the conventional protein sources if it is prepared healthily. The seed oil helps in oleo-chemical creation, 
for example, soaps, shampoos, and biodiesel. African nations are urged to include the resources for the development of that plant for 
diminishing the large dependability upon it. The plant could be developed in wastelands. The plant required least water when it is in 
the developing stage. Three thousand saplings could be planted in 1 ha, and out of that, around 52.5 tons of seeds (around 3500 kg of 
the kernel) could be gathered. Subsequently, around 1750 L of oil could be acquired from 1 ha of wasteland. Abhorred by herbivorous 
animals, the plant can be developed on side of the road and street dividers in interstates for beautification, ecological insurance and 
simultaneously for the creation of biodiesel. Because of high oil and protein substance, and its accessibility, the plant has a potential for 
different utilizations and it very well might be utilized for biodiesel creation [27,28,32]. 

2.2. Transesterification process 

In the transesterification process, the raw oil of Thevetia peruviana is converted into biodiesel of Thevetia peruviana. Trans-
esterification (TE) process involves heating the raw oil in a flask with three necks in which a magnetic stirrer is placed [33,34] (Fig. 1a). 
The required amount of methanol and sodium hydroxide catalyst is added to the flask. This mixture is kept for 2–3 h for the reaction 
purpose. After this, the mixture is placed in a separating flask overnight in which biodiesel and glycerol formation occur (Fig. 1b). The 
glycerol is removed out, and crude biodiesel is obtained. This unrefined biodiesel is washed with hot water so that there is the sep-
aration of phase in between water and biodiesel (Fig. 1c). This biodiesel consists of some water content removed by heating the 

Table 1 
Physical properties of test fuels.  

Fuels → Physical properties ↓ Pentanol [25] Diesel TPME B20 TPME B100 

Density at 20 ◦C (kg/m3) 814 829 839 892 
Calorific value (MJ/kg) 34.65 42.18 41.44 39.45 
Flash point (◦C) 49 52 76 177 
Kinematic viscosity at 40 ◦C (mm2/s) 2.88 3.51 3.95 5.73 
Cetane number 18.2 52 48 47  
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biodiesel in a heating oven so that all the water content is removed and pure biodiesel is obtained. In the present study, the TE reaction 
is referred to previous investigations [35–37]. The flow chart regarding the conversion of raw oil into biodiesel is shown in Fig. 2. 

3. Experimental setup 

The entire experiment tests were conducted on Kirloskar, single-cylinder, water-cooled, common rail diesel injection (CRDI) en-
gine, which runs at 1500 rpm. The base test was carried out with the injection of diesel to warm up the engine. The existing engine was 
modified into a dual fuel mode of operation by modifying necessary arrangements. Initially, high ON fuel such as pentanol was injected 
into the inlet manifold at IP of 5 bar during suction stroke so that it could well be mixed with intake air and evenly distributed inside 
the combustion chamber. During the compression stroke, high CN fuel such as diesel was directly injected into the combustion 
chamber at IP of 900 bar so that there was a formation of fuel reactivity inside the combustion chamber. The injection of high ON fuel 
was controlled by an electronic control unit (ECU). High ON fuel injection was increased up to 10% at every step of experiments, and 

Fig. 1. Synthesis of Thevetia peruviana biodiesel [13] (Adapted with permission from the publisher).  

Fig. 2. Flow chart for biodiesel production from raw oil.  
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readings were noted down. In the next step, the high CN fuel was changed to B20 and B100 blends of TPME, tests were repeated with 
the same procedure. The entire tests were conducted at 50% of rated power to avoid the knocking phenomenon. The experimental line 
diagram is shown in Fig. 3. The actual experimental setup is shown in Fig. 4. The pentanol fuel injector is shown in Fig. 5. The toroidal 
combustion chamber was used for the experiment is shown in Fig. 6. The general specifications of the test engine are provided in 
Table 2. 

3.1. Uncertainty analysis of the experimental data 

The experimental uncertainty analysis of the current work is presented in Table 3. To reduce the errors of calculated parameters, 
four readings are noted, and the results of average values are presented for the study [38,39]. 

4. Results and discussion 

This segment presents the outline of the experimental results on a four-stroke, single-cylinder, dual-fuel engine operated under 
RCCI mode of combustion. In the current investigation, engine tests were performed when the engine arrived at settled working 
conditions. The experimental tests were directed with pentanol as LRF and diesel, TPME B20 and TPME B100 blends as HRF at 50% of 
rated power. The performance, combustion and emission characteristics of dual-fuel engine operated under the RCCI mode of oper-
ation are described. 

Variation of BTE with the percentage of pentanol in injected fuels for various fuel combinations is shown in Fig. 7. BTE decreased 
with the increased percentage of pentanol [40]. That may be due to the formation of low-temperature combustion inside the com-
bustion chamber with the addition of pentanol fuel. A Higher BTE of 22.15% is obtained for diesel and pentanol fuel combination at 
10% of pentanol in injected fuels, which is about 9.1% and 27.3% higher than other fuel combinations. This is because diesel had a 
more calorific value that exhibits better combustion than biodiesel [5]. 

Fig. 3. RCCI engine line diagram [13] (Adapted with permission from the publisher).  
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Variation of NOx emissions with the percentage of pentanol in injected fuels for various fuel combinations is shown in Fig. 8. NOx 
emissions are decreased with the increase in pentanol percentage. Highest NOx emissions are obtained for diesel and pentanol fuel 
combination at 10% of pentanol. This is due to the lean mixture formation of pentanol with air, which leads to lower reaction duration 
and decreases NOx emissions. 

Variation of HC emissions with the percentage of pentanol in injected fuels for various fuel combinations is shown in Fig. 9. HC 
emissions are increased with the increase in pentanol percentage. Lowest HC emissions are obtained for diesel and pentanol at 10% of 
pentanol in injected fuels. This is due to incomplete combustion as the increase of pentanol in injected fuels. 

Variation of CO emissions with the percentage of pentanol in injected fuels for various fuel combinations is shown in Fig. 10. CO 
emissions are increased as the pentanol percentage increases [40]. Lowest CO emissions are observed for diesel and pentanol at 10% of 
pentanol in injected fuels. With the addition of pentanol, there is not enough oxygen available for the complete combustion of fuel and 
air mixture, leading to higher CO emissions. 

Variation of smoke emissions with a percentage of pentanol in injected fuels for various fuel combinations is shown in Fig. 11. As 
the percentage of pentanol increased, smoke emissions are decreased. Lowest smoke emissions are found for diesel and n-pentanol at 
10% of pentanol in injected fuels. Because of highly premixed pentanol and more time of mixing for diesel, smoke emissions were very 
low [41]. 

Fig. 12 shows the variation of in-cylinder pressure with the crank angle at 10% pentanol in injected fuels. The highest pressure is 

Fig. 4. Actual diagram of RCCI experimental setup [13] (Adapted with permission from the publisher).  

Fig. 5. Pentanol fuel injector [13] (Adapted with permission from the publisher).  
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Fig. 6. Toroidal combustion chamber [13] (Adapted with permission from the publisher).  

Table 2 
Test engine specifications [13] (Adapted with permission from the 
publisher).  

Engine parameters Specifications 

Engine TV1 Kirloskar Engine 
No. of cylinders 1 
Software used Engine soft 
No. of strokes 4 
Compression ratio 17.5: 1 
Bore × stroke 87.5 × 110 (mm) 
Combustion chamber Toroidal 
Dynamometer Eddy current 
Rated power 5.2 kW 
Direct injection pressure 900 bar 
Manifold injection pressure 5 bar  

Table 3 
Uncertainty analysis of the experimental data.  

Measured variable Accuracy 

Load (N) ±0.1 
Engine speed (rpm) ±2 
Measured variable Uncertainty (%) 
Smoke ±0.3 
Hydrocarbon ±0.2 
Carbon monoxide ±0.1 
Nitrogen oxide ±0.3 
Calculated parameters Uncertainty (%) 
Brake thermal efficiency (%) ±1.2  
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Fig. 7. Variation of BTE with a percentage of pentanol in injected fuels.  

Fig. 8. Variation of NOx emissions with a percentage of pentanol in injected fuels.  

Fig. 9. Variation of HC emissions with a percentage of pentanol in injected fuels.  
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Fig. 10. Variation of CO emissions with a percentage of pentanol in injected fuels.  

Fig. 11. Variation of smoke emissions with the percentage of pentanol in injected fuels.  

Fig. 12. Variation of in-cylinder pressure with the crank angle at 10% pentanol in injected fuels.  
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found for diesel and pentanol fuel combination mode as compared with other tested fuels. This is due to better combustion of fuel and 
air mixture inside the combustion chamber for diesel and pentanol fuel combination. 

Fig. 13 shows the variation of HRR with the crank angle at 10% pentanol in injected fuels. Highest HRR is found for diesel and 
pentanol fuel combination mode as compared with other tested fuels. This is because diesel had more calorific value than biodiesel, 
and hence it burns effectively with the dosage of pentanol. 

5. Conclusions 

The experimental investigations on dual-fuel engines under the RCCI mode of combustion are performed at a different percentage 
of pentanol in injected fuels. Pentanol is injected along with air as LRF, and diesel, B20 and B100 blends of TPME are injected into the 
combustion chamber during compression stroke as HRF. From the experimental results following conclusions are drawn.  

• As pentanol percentage increased in injected fuels, BTE decreased. Among various fuel combinations tested, diesel and pentanol 
give higher BTE as compared with other fuels. A Higher BTE of 22.15% is obtained for diesel and pentanol fuel combination at 10% 
of pentanol in injected fuels, which is about 9.1% and 27.3% higher than other fuel combinations.  

• As the percentage of pentanol increased in injected fuels, HC and CO emissions increased while NOx and smoke emissions are 
decreased. Among various fuel combinations, tested diesel and pentanol give lower HC, CO and smoke emissions and higher NOx 
emissions than other fuel combinations.  

• At 10% pentanol in injected fuels, the highest in-cylinder pressure and HRR are found for diesel and pentanol fuel combinations 
compared with other fuel combinations. 

Pentanol injection in RCCI mode of combustion as LRF with the diesel, B20 and B100 blends of TPME as HRF is carried out in the 
present work. Among different percentages of pentanol in injected fuels, 10% gives more efficient results in terms of efficiency and 
emissions. RCCI engine fueled with biodiesel exhibited lower performance as compared with diesel fuel. Nevertheless, biodiesel en-
ables partial replacement for fossil diesel, decreasing the need for petroleum fuel and offers ecological energy supply. 

6. Future scope 

In the present work, the effect of pentanol as LRF and diesel, TPME B20 and TPME B100 blends as HRF on dual fuel engine under 
RCCI mode of combustion is performed at a different percentage of pentanol in injected fuels. The future scope of the research work 
includes the following.  

• Study of RCCI engine fueled with various alcoholic fuels as low reactive fuels and various biodiesels as high reactive fuels.  
• A study on the effect of exhaust gas recirculation and combustion chamber geometry on the performance, combustion and emission 

characteristics of RCCI engine needs to be carried out. 
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