433 research outputs found

    Impact of surface-polish on the angular and wavelength dependence of fiber focal ratio degradation

    Full text link
    We present measurements of how multimode fiber focal-ratio degradation (FRD) and throughput vary with levels of fiber surface polish from 60 to 0.5 micron grit. Measurements used full-beam and laser injection methods at wavelengths between 0.4 and 0.8 microns on 17 meter lengths of Polymicro FBP 300 and 400 micron core fiber. Full-beam injection probed input focal-ratios between f/3 and f/13.5, while laser injection allowed us to isolate FRD at discrete injection angles up to 17 degrees (f/1.6 marginal ray). We find (1) FRD effects decrease as grit size decreases, with the largest gains in beam quality occurring at grit sizes above 5 microns; (2) total throughput increases as grit size decreases, reaching 90% at 790 nm with the finest polishing levels; (3) total throughput is higher at redder wavelengths for coarser polishing grit, indicating surface-scattering as the primary source of loss. We also quantify the angular dependence of FRD as a function of polishing level. Our results indicate that a commonly adopted micro-bending model for FRD is a poor descriptor of the observed phenomenon.Comment: 10 pages, 7 figures, presented at SPIE Astronomical Telescopes and Instrumentation, July 201

    Hybrid Sulfur Process for Solar Production of Hydrogen

    Get PDF
    Lowering dependence on fossil-based fuels has become a major area of focus in research, especially in transportation fuels. One particularly interesting field is that of hydrogen production. Hydrogen is promising because it has the potential to emit no greenhouse gases when used as fuel and is an excellent vessel for energy storage. Because traditional methods for its generation are inefficient and require nonrenewable fuel use, researchers have begun to focus on thermochemical cycles. Thermochemical cycles are systems that require heat transfer intrinsically and do not consume fossil fuels nor emit greenhouse gases if renewable energy is used for heating. The hybrid sulfur process (HyS) has become a premiere cycle recently, as it is one of the simplest hydrolysis cycles with only two steps in the reaction and just two inputs, sulfuric acid and water, and still provides high purity hydrogen. The first reaction is endothermic, the high-temperature decomposition of sulfuric acid (H2SO4) into sulfur dioxide and water. Two different sources for the heat energy are viable, nuclear and solar power. These products are then fed to an electrolyzer in which sulfuric acid and hydrogen protons are produced at the anode, then the protons are passed across the membrane to form hydrogen. H2 is removed as the desired product and H2SO4 is recycled to the decomposition step5. The Sandia National Laboratory (SNL) has been focusing research on the reactor needed for the high temperature acid decomposition step of the reaction. In particular, the materials needed to accommodate such high temperatures are difficult to design and implement into the needed equipment. SNL has developed the innovative bayonet decomposition reactor that minimizes these concerns. The reactor consists of two concentric flow paths, one closed and one open tube. High temperatures are applied at the closed end while the sulfuric acid enters in the open end where it is vaporized before passing through a catalyst bed where the decomposition takes place. For the HyS process to be viable, it is very important for the high-temperature reaction step to consume as little thermal energy as possible, therefore increasing thermal efficiency. Previous pinch analyses performed by Savannah River National Laboratory (SRNL) determined a feasible minimum energy requirement of 328.6 kJ/mol H2 based on a feed concentration of 75% sulfuric acid4. SRNL has been researching the SO2-depolarized electrolyzer (SDE), which applies a potential to the process fluid to separate water into oxygen, hydrogen protons, and electrons, which recombine to form hydrogen gas and reform the sulfuric acid1. Engineers at SRNL have developed a flowsheet for the HyS process integrating the bayonet reactor heat source with the SDE using ASPEN Plus. It was found that the two areas of the process that require heat input are the Bayonet Reactor and the Vacuum Column reboiler, used for feed concentration, at 340.3 kJ/mol H2 and 75.5 kJ/mol H2, respectively. The total amount of electric energy required was found to be 120.9 kJ/mol H2, used primarily by the SDE. Therefore, the total energy requirement of the process is 685.8 kJ/mol H2, with 252.9 kJ/mol H2 rejected to cooling water. Thermal efficiencies were found to be in the range of 33-39%2. The HyS process can only be a viable option if it has the potential to outperform alternate hydrogen production techniques. Water electrolysis is one established technology with which the HyS must be able to compete. According to the Nernst equation, standard cell potential for the SDE is lower than that of water electrolysis with traditional water at -1.229V and the HyS process at -0.158; therefore, considerably less electricity per mole of hydrogen product is consumed in the HyS process6. The research discussed above has found that the HyS process has the potential to perform at efficiencies higher than that of water electrolysis, making it a promising area of research. The HyS process also has an advantage over other potential thermochemical cycles due to its relatively simple and few reaction steps. The HyS process also has an advantage over natural gas reforming, which currently produces a large amount of hydrogen currently, in that it is a much cleaner energy source and emits no greenhouse gases. However, further research must be performed to greater explore the economics of the process

    The Relationship between Institutional, Departmental and Program-Specific Variables and the Academic Performance of Division I FBS Football Programs

    Full text link
    This study investigated the connection between the academic evaluation of Division I FBS football programs and the various social settings that influenced these student-athletes. These social settings were classified as: institutional, departmental and program-specific. The experience of the student-athlete is thought to be impacted by all three settings, creating applicability for social identity theory, which provides the theoretical framework of the study

    HexPak and GradPak: variable-pitch dual-head IFUs for the WIYN 3.5m Telescope Bench Spectrograph

    Full text link
    We describe the design, construction, and expected performance of two new fiber integral field units (IFUs) --- HexPak and GradPak --- for the WIYN 3.5m Telescope Nasmyth focus and Bench Spectrograph. These are the first IFUs to provide formatted fiber integral field spectroscopy with simultaneous sampling of varying angular scales. HexPak and GradPak are in a single cable with a dual-head design, permitting easy switching between the two different IFU heads on the telescope without changing the spectrograph feed: the two heads feed a variable-width double-slit. Each IFU head is comprised of a fixed arrangement of fibers with a range of fiber diameters. The layout and diameters of the fibers within each array are scientifically-driven for observations of galaxies: HexPak is designed to observe face-on spiral or spheroidal galaxies while GradPak is optimized for edge-on studies of galaxy disks. HexPak is a hexagonal array of 2.9 arcsec fibers subtending a 40.9 arcsec diameter, with a high-resolution circular core of 0.94 arcsec fibers subtending 6 arcsec diameter. GradPak is a 39 by 55 arcsec rectangular array with rows of fibers of increasing diameter from angular scales of 1.9 arcsec to 5.6 arcsec across the array. The variable pitch of these IFU heads allows for adequate sampling of light profile gradients while maintaining the photon limit at different scales.Comment: 10 pages, 4 figures, presented at SPIE, Astronomical Telescopes and Instrumentation, 1 - 6 July 2012, Amsterdam, Netherland

    Unraveling the Allosteric Mechanism of Serine Protease Inhibition by an Antibody

    Get PDF
    SummaryRecent structural studies have outlined the mechanism of protease inhibition by active site-directed antibodies. However, the molecular basis of allosteric inhibition by antibodies has been elusive. Here we report the 2.35 Å resolution structure of the trypsin-like serine protease hepatocyte growth factor activator (HGFA) in complex with the allosteric antibody Ab40, a potent inhibitor of HGFA catalytic activity. The antibody binds at the periphery of the substrate binding cleft and imposes a conformational change on the entire 99-loop (chymotrypsinogen numbering). The altered conformation of the 99-loop is incompatible with substrate binding due to the partial collapse of subsite S2 and the reorganization of subsite S4. Remarkably, a single residue deletion of Ab40 abolished inhibition of HGFA activity, commensurate with the reversal of the 99-loop conformation to its “competent” state. The results define an “allosteric switch” mechanism as the basis of protease inhibition by an allosteric antibody

    Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood. Here, we have generated potent HCV neutralizing antibodies hu5B3.v3 and MRCT10.v362 that, similar to the previously described AP33 and HCV1, bind to a highly conserved linear epitope on E2. We utilize a combination of in vitro resistance selections using the cell culture infectious HCV and structural analyses to identify mechanisms of HCV resistance to hu5B3.v3 and MRCT10.v362. Ultra deep sequencing from in vitro HCV resistance selection studies identified resistance mutations at asparagine N417 (N417S, N417T and N417G) as early as 5 days post treatment. Comparison of the glycosylation status of soluble versions of the E2 glycoprotein containing the respective resistance mutations revealed a glycosylation shift from N417 to N415 in the N417S and N417T E2 proteins. The N417G E2 variant was glycosylated neither at residue 415 nor at residue 417 and remained sensitive to MRCT10.v362. Structural analyses of the E2 epitope bound to hu5B3.v3 Fab and MRCT10.v362 Fab using X-ray crystallography confirmed that residue N415 is buried within the antibody–peptide interface. Thus, in addition to previously described mutations at N415 that abrogate the β-hairpin structure of this E2 linear epitope, we identify a second escape mechanism, termed glycan shifting, that decreases the efficacy of broadly neutralizing HCV antibodies

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Oncogenic ERBB3 Mutations in Human Cancers

    Get PDF
    SummaryThe human epidermal growth factor receptor (HER) family of tyrosine kinases is deregulated in multiple cancers either through amplification, overexpression, or mutation. ERBB3/HER3, the only member with an impaired kinase domain, although amplified or overexpressed in some cancers, has not been reported to carry oncogenic mutations. Here, we report the identification of ERBB3 somatic mutations in ∼11% of colon and gastric cancers. We found that the ERBB3 mutants transformed colonic and breast epithelial cells in a ligand-independent manner. However, the mutant ERBB3 oncogenic activity was dependent on kinase-active ERBB2. Furthermore, we found that anti-ERBB antibodies and small molecule inhibitors effectively blocked mutant ERBB3-mediated oncogenic signaling and disease progression in vivo

    Solution structure and characterization of the LGR8 receptor binding surface of insulin-like peptide 3

    Get PDF
    Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein- coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/ insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor
    corecore