72 research outputs found

    Dexamethasone Induces the Expression and Function of Tryptophan-2-3-dioxygenase in SK-MEL-28 Melanoma Cells

    Get PDF
    Tryptophan-2,3-dioxygenase (TDO) is one of the key tryptophan-catabolizing enzymes with immunoregulatory properties in cancer. Contrary to expectation, clinical trials showed that inhibitors of the ubiquitously expressed enzyme, indoleamine-2,3-dioxygenase-1 (IDO1), do not provide benefits in melanoma patients. This prompted the hypothesis that TDO may be a more attractive target. Because the promoter of TDO harbors glucocorticoid response elements (GREs), we aimed to assess whether dexamethasone (dex), a commonly used glucocorticoid, modulates TDO expression by means of RT-PCR and immunofluorescence and function by assessing cell proliferation and migration as well as metalloproteinase activity. Our results show that, in SK-Mel-28 melanoma cells, dex up-regulated TDO and its downstream effector aryl hydrocarbon receptor (AHR) but not IDO1. Furthermore, dex stimulated cellular proliferation and migration and poten-tiated MMP2 activity. These effects were inhibited by the selective TDO inhibitor 680C91 and enhanced by IDO1 inhibitors. Taken together, our results demonstrate that the metastatic melanoma cell line SK-Mel-28 possesses a functional TDO which can also modulate cancer cell phenotype di-rectly rather than through immune suppression. Thus, TDO appears to be a promising, tractable target in the management or the treatment of melanoma progression

    Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury

    Get PDF
    Diabetic nephropathy (DN) is the leading cause of end stage renal disease worldwide. Increased glucose flux into the aldose reductase (AR) pathway during diabetes was reported to exert deleterious effects on the kidney. The objective of this study was to investigate the renoprotective effects of AR inhibition in high glucose milieu in vitro. Rat renal tubular (NRK-52E) cells were exposed to high glucose (30 mM) or normal glucose (5 mM) media for 24 to 48 hours with or without the AR inhibitor epalrestat (1 M) and assessed for changes in Akt and ERK1/2 signaling, AR expression (using western blotting), and alterations in mitochondrial membrane potential (using JC-1 staining), cell viability (using MTT assay), and cell cycle. Exposure of NRK-52E cells to high glucose media caused acute activation of Akt and ERK pathways and depolarization of mitochondrial membrane at 24 hours. Prolonged high glucose exposure (for 48 hours) induced AR expression and G1 cell cycle arrest and decreased cell viability (84% compared to control) in NRK-52E cells. Coincubation of cells with epalrestat prevented the signaling changes and renal cell injury induced by high glucose. Thus, AR inhibition represents a potential therapeutic strategy to prevent DN

    Bilosomes as a promising nanoplatform for oral delivery of an alkaloid nutraceutical:improved pharmacokinetic profile and snowballed hypoglycemic effect in diabetic rats

    Get PDF
    Diabetes mellitus is a life-threatening metabolic disease. At the moment, there is no effective treatment available to combat it. In this study, we aimed to develop berberine-loaded bilosomes (BER-BLS) to boost the oral bioavailability and therapeutic efficacy of berberine, a natural antidiabetic medication. The BER-BLS was fabricated using a thin-film hydration strategy and optimized using a central composite design (face-centered). The average vesicle size, entrapment efficiency, and surface charge of the optimized BER-BLS preparation were 196.5 nm, 89.7%, (−) 36.4 mV, respectively. In addition, it exhibited higher stability and better-sustained release of berberine than the berberine solution (BER-SOL). BER-BLS and BER-SOL were administered to streptozocin-induced diabetic rats. The optimized BER-BLS formulation had a significant hypoglycemic impact, with a maximum blood glucose decrease of 41%, whereas BER-SOL only reduced blood glucose by 19%. Furthermore, the pharmacological effect of oral BER-BLS and BER-SOL corresponded to 99.3% and 31.7%, respectively, when compared to subcutaneous insulin (1 IU). A pharmacokinetic analysis found a 6.4-fold rise in the relative bioavailability of berberine in BER-BLS when compared to BER-SOL at a dosage of 100 mg/kg body weight. Histopathological investigation revealed that BER-BLS is suitable for oral administration. Our data demonstrate that BLS is a potential nanocarrier for berberine administration, enhancing its oral bioavailability and antidiabetic activity

    Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin

    Get PDF
    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nano-particles (15.6-1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells

    The SARS-CoV-2 Spike Protein Activates the Epidermal Growth Factor Receptor-Mediated Signaling

    Get PDF
    The coronavirus disease-19 (COVID-19) pandemic is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At the molecular and cellular levels, the SARS-CoV-2 uses its envelope glycoprotein, the spike S protein, to infect the target cells in the lungs via binding with their transmembrane receptor, the angiotensin-converting enzyme 2 (ACE2). Here, we wanted to investigate if other molecular targets and pathways may be used by SARS-CoV-2. We investigated the possibility of the spike 1 S protein and its receptor-binding domain (RBD) to target the epidermal growth factor receptor (EGFR) and its downstream signaling pathway in vitro using the lung cancer cell line (A549 cells). Protein expression and phosphorylation were examined upon cell treatment with the recombinant full spike 1 S protein or RBD. We demonstrate for the first time the activation of EGFR by the Spike 1 protein associated with the phosphorylation of the canonical Extracellular signal-regulated kinase1/2 (ERK1/2) and AKT kinases and an increase in survivin expression controlling the survival pathway. Our study suggests the putative implication of EGFR and its related signaling pathways in SARS-CoV-2 infectivity and COVID-19 pathology. This may open new perspectives in the treatment of COVID-19 patients by targeting EGFR

    Evaluation and prediction of groundwater quality for irrigation using an integrated water quality indices, machine learning models and GIS approaches: a representative case study

    Get PDF
    Agriculture has significantly aided in meeting the food needs of growing population. In addition, it has boosted economic development in irrigated regions. In this study, an assessment of the groundwater (GW) quality for agricultural land was carried out in El Kharga Oasis, Western Desert of Egypt. Several irrigation water quality indices (IWQIs) and geographic information systems (GIS) were used for the modeling development. Two machine learning (ML) models (i.e., adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM)) were developed for the prediction of eight IWQIs, including the irrigation water quality index (IWQI), sodium adsorption ratio (SAR), soluble sodium percentage (SSP), potential salinity (PS), residual sodium carbonate index (RSC), and Kelley index (KI). The physicochemical parameters included T°, pH, EC, TDS, K+, Na+, Mg2+, Ca2+, Cl−, SO42−, HCO3−, CO32−, and NO3−, and they were measured in 140 GW wells. The hydrochemical facies of the GW resources were of Ca-Mg-SO4, mixed Ca-Mg-Cl-SO4, Na-Cl, Ca-Mg-HCO3, and mixed Na-Ca-HCO3 types, which revealed silicate weathering, dissolution of gypsum/calcite/dolomite/ halite, rock–water interactions, and reverse ion exchange processes. The IWQI, SAR, KI, and PS showed that the majority of the GW samples were categorized for irrigation purposes into no restriction (67.85%), excellent (100%), good (57.85%), and excellent to good (65.71%), respectively. Moreover, the majority of the selected samples were categorized as excellent to good and safe for irrigation according to the SSP and RSC. The performance of the simulation models was evaluated based on several prediction skills criteria, which revealed that the ANFIS model and SVM model were capable of simulating the IWQIs with reasonable accuracy for both training “determination coefficient (R2)” (R2 = 0.99 and 0.97) and testing (R2 = 0.97 and 0.76). The presented models’ promising accuracy illustrates their potential for use in IWQI prediction. The findings indicate the potential for ML methods of geographically dispersed hydrogeochemical data, such as ANFIS and SVM, to be used for assessing the GW quality for irrigation. The proposed methodological approach offers a useful tool for identifying the crucial hydrogeochemical components for GW evolution assessment and mitigation measures related to GW management in arid and semi-arid environments

    Preparation, characterization, in vitro drug release and anti-inflammatory of thymoquinone-loaded chitosan nanocomposite

    Get PDF
    In this study, we formulated Thymoquinone-loaded nanocomposites (TQ-NCs) using high-pressure homogenizer without sodium tripolyphosphate. The TQ-NCs were characterized and their anti-inflammatory determined by the response of the LPS-stimulated macrophage RAW 264.7 cells in the production of nitric oxide, prostaglandin E2, tumor necrosis factor-α, interleukin-6, and interleukin-1β. The physicochemical properties of TQ-NC were determined using different machines. TQ was fully incorporated in the highly thermal stable nanoparticles. The nanoparticles showed rapid release of TQ in the acidic medium of the gastric juice. In medium of pH 6.8, TQ-NC exhibited sustained release of TQ over a period of 100 h. The results suggest that TQ-NC nanoparticles have potential application as parenterally administered therapeutic compound. TQ-NC effectively reduce production of inflammatory cytokines by the LPS-stimulated RAW 264.7 cells, indicating that they have anti-inflammatory properties. In conclusion, TQ-NC nanoparticles have the characteristics of efficient carrier for TQ and an effective anti-inflammatory therapeutic compound.The publication of this article was funded by the Qatar National Library

    Follow up and comparative assessment of IgG, IgA, and neutralizing antibody responses to SARS-CoV-2 between mRNA-vaccinated naïve and unvaccinated naturally infected individuals over 10 months

    Get PDF
    BackgroundEvidence on the effectiveness of vaccination-induced immunity compared to SARS-CoV-2 natural immunity is warranted to inform vaccination recommendations. AimIn this study, we aimed to conduct a comparative assessment of antibody responses between vaccinated naïve (VN) and unvaccinated naturally infected individuals (NI) over 10 Months. MethodThe study comprised fully-vaccinated naïve individuals (VN; n = 596) who had no history of SARS-CoV-2 infection, and received two doses of either BNT162b2 or mRNA-1273, and naturally infected individuals who had a documented history of SARS-CoV-2 infection and no vaccination record (NI cohort; n = 218). We measured the levels of neutralizing total antibodies (NtAbs), anti-S-RBD IgG, and anti-S1 IgA titers among VN and NI up to ∼10 months from administration of the first dose, and up to ∼7 months from SARS-CoV-2 infection, respectively. To explore the relationship between the antibody responses and time, Spearman's correlation coefficient was computed. Furthermore, correlations between the levels of NtAbs/anti-S-RBD IgG and NtAbs/anti-S1 IgA were examined through pairwise correlation analysis. ResultsUp to six months, VN individuals had a significantly higher NtAb and anti-S-RBD IgG antibody responses compared to NI individuals. At the 7th month, there was a significant decline in antibody responses among VN individuals, but not NI individuals, with a minimum decrease of 3.7-fold (p < 0.001). Among VN individuals, anti-S1 IgA levels began to decrease significantly (1.4-fold; p = 0.007) after two months, and both NtAb and S-RBD IgG levels began to decline significantly (NtAb: 2.0-fold; p = 0.042, S-RBD IgG: 2.4-fold; p = 0.035) after three months. After 10 months, the most significant decline among VN individuals was observed for S-RBD-IgG (30.0-fold; P < 0.001), followed by NtAb (15.7-fold; P < 0.001) and S-IgA (3.7-fold; P < 0.001) (most stable). Moreover, after 5 months, there was no significant difference in the IgA response between the two groups. ConclusionThese findings have important implications for policymakers in the development of vaccination strategies, particularly in the consideration of booster doses to sustain long-lasting protection against COVID-19.This work was made possible by WHO grant number COVID-19-22-43 and grant number UREP28-173-3-057 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors

    Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    Get PDF
    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2±29.8nm, 0.524 ±0.013, and -60±14mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore