45 research outputs found

    A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    Get PDF
    J. Kaprio, A. Palotie, A. Raevuori-Helkamaa ja S. Ripatti ovat työryhmÀn Eating Disorders Working Group of the Psychiatric Genomics Consortium jÀseniÀ. Erratum in: Sci Rep. 2017 Aug 21;7(1):8379, doi: 10.1038/s41598-017-06409-3We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P = 2.04 x 10(-7); OR = 0.7; 95% confidence interval (CI) = 0.61-0.8) with independent replication (P = 0.04), suggesting a variant-mediated dysregulation of leptin signaling may play a role in AN. Multiple SNPs in LD with the variant support the nominal association. This demonstrates that although the clinical and etiologic heterogeneity of AN is universally recognized, further careful sub-typing of cases may provide more precise genomic signals. In this study, through a refinement of the phenotype spectrum of AN, we present a replicable GWAS signal that is nominally associated with AN, highlighting a potentially important candidate locus for further investigation.Peer reviewe

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Early Education Essentials Illustrations of Strong Organizational Practices in Programs Poised for Improvement

    No full text
    Extensive evidence demonstrates that high-quality, well-implemented early childhood education (ECE) positively impacts the learning trajectories of children, especially those from vulnerable populations. Yet many early childhood programs across the nation struggle to implement high-quality programming and, consequently, fail to sufficientlyadvance children's early learning. A growing body of research on school improvement demonstrates that strong organizational conditions will be necessary to lift stagnant levels of quality in early childhood settings. But this begs the question: What do strong organizational conditions look like in ECE settings?The Ounce of Prevention Fund, in partnership with UChicago Consortium, developed and validated the Early EducationEssentials surveys to provide the field with reliable and valid measurement of organizational conditions. As part of ourmeasurement work, we spent time observing and talking with leaders, teachers and families in ECE programs whosesurvey responses indicated that their essential supports were either very strong or very weak. Differences in their organizational climate and conditions were stark and unmistakable. Simply put, strongly organized programs created contexts far more supportive of teaching, learning and family engagement than the contexts created by weakly organized programs. In this paper, we describe those strong organizational contexts and how they empowered leaders, teachers and families to aspire to and realize higher-quality practices and better outcomes for young children

    Management of Anterocapitis and Anterocollis: A Novel Ultrasound Guided Approach Combined with Electromyography for Botulinum Toxin Injection of Longus Colli and Longus Capitis

    No full text
    Chemodenervation of cervical musculature using botulinum neurotoxin (BoNT) is established as the gold standard or treatment of choice for management of Cervical Dystonia (CD). The success of BoNT procedures is measured by improved symptomology while minimizing side effects and is dependent upon many factors including: clinical pattern recognition, identifying contributory muscles, BoNT dosage, and locating and safely injecting target muscles. In patients with CD, treatment of anterocollis (forward flexion of the neck) and anterocaput (anterocapitis) (forward flexion of the head) are inarguably challenging. The longus Colli (LoCol) and longus capitis (LoCap) muscles, two deep cervical spine and head flexor muscles, frequently contribute to these patterns. Localizing and safely injecting these muscles is particularly challenging owing to their deep location and the complex regional anatomy which includes critical neurovascular and other structures. Ultrasound (US) guidance provides direct visualization of the LoCol, LoCap, other cervical muscles and adjacent structures reducing the risks and side effects while improving the clinical outcome of BoNT for these conditions. The addition of electromyography (EMG) provides confirmation of muscle activity within the target muscle. Within this manuscript, we present a technical description of a novel US guided approach (combined with EMG) for BoNT injection into the LoCol and LoCap muscles for the management of anterocollis and anterocaput in patients with CD

    Association of polygenic risk score with response to deep brain stimulation in Parkinson’s disease

    No full text
    Abstract Background Deep brain stimulation (DBS) is a well-established treatment option for select patients with Parkinson’s Disease (PD). However, response to DBS varies, therefore, the ability to predict who will have better outcomes can aid patient selection. Some PD-related monogenic mutations have been reported among factors that influence response to DBS. However, monogenic disease accounts for only a minority of patients with PD. The polygenic risk score (PRS) is an indication of cumulative genetic risk for disease. The PRS in PD has also been correlated with age of onset and symptom progression, but it is unknown whether correlations exist between PRS and DBS response. Here, we performed a pilot study to look for any such correlation. Methods We performed a retrospective analysis of 33 PD patients from the NIH PD Clinic and 13 patients from the Parkinson’s Progression Markers Initiative database who had genetic testing and underwent bilateral subthalamic nucleus DBS surgery and clinical follow-up. A PD-specific PRS was calculated for all 46 patients based on the 90 susceptibility variants identified in the latest PD genome-wide association study. We tested associations between PRS and pre- and post-surgery motor and cognitive measures using multiple regression analysis for up to two years after surgery. Results Changes in scores on the Beck Depression Inventory (BDI) were not correlated with PRS when derived from all susceptibility variants, however, when removing pathogenic and high-risk carriers from the calculation, higher PRS was significantly associated with greater reduction in BDI score at 3 months and with similar trend 24 months after DBS. PRS was not a significant predictor of Unified Parkinson’s Disease Rating Scale, Dementia Rating Scale, or phenomic and semantic fluency outcomes at 3- and 24-months after DBS surgery. Conclusions This exploratory study suggests that PRS may predict degree of improvement in depressive symptoms after DBS, though was not predictive of motor and other cognitive outcomes after DBS. Additionally, PRS may be most relevant in predicting DBS outcomes in patients lacking pathogenic or high-risk PD variants. However, this was a small preliminary study and response to DBS treatment is multifactorial, therefore, more standardized high-powered studies are needed
    corecore