57 research outputs found

    A Regional Reduction in Ito and IKACh in the Murine Posterior Left Atrial Myocardium Is Associated with Action Potential Prolongation and Increased Ectopic Activity.

    Get PDF
    BACKGROUND: The left atrial posterior wall (LAPW) is potentially an important area for the development and maintenance of atrial fibrillation. We assessed whether there are regional electrical differences throughout the murine left atrial myocardium that could underlie regional differences in arrhythmia susceptibility. METHODS: We used high-resolution optical mapping and sharp microelectrode recordings to quantify regional differences in electrical activation and repolarisation within the intact, superfused murine left atrium and quantified regional ion channel mRNA expression by Taqman Low Density Array. We also performed selected cellular electrophysiology experiments to validate regional differences in ion channel function. RESULTS: Spontaneous ectopic activity was observed during sustained 1Hz pacing in 10/19 intact LA and this was abolished following resection of LAPW (0/19 resected LA, P<0.001). The source of the ectopic activity was the LAPW myocardium, distinct from the pulmonary vein sleeve and LAA, determined by optical mapping. Overall, LAPW action potentials (APs) were ca. 40% longer than the LAA and this region displayed more APD heterogeneity. mRNA expression of Kcna4, Kcnj3 and Kcnj5 was lower in the LAPW myocardium than in the LAA. Cardiomyocytes isolated from the LAPW had decreased Ito and a reduced IKACh current density at both positive and negative test potentials. CONCLUSIONS: The murine LAPW myocardium has a different electrical phenotype and ion channel mRNA expression profile compared with other regions of the LA, and this is associated with increased ectopic activity. If similar regional electrical differences are present in the human LA, then the LAPW may be a potential future target for treatment of atrial fibrillation

    Liverpool telescope 2: a new robotic facility for rapid transient follow-up

    Get PDF
    The Liverpool Telescope is one of the world's premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other facilities such as SVOM, SKA and CTA; and the era of `multi-messenger astronomy', wherein events are detected via non-electromagnetic means, such as gravitational wave emission. We describe here our plans for Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the LT at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely rapid response: the aim is that the telescope will take data within 30 seconds of the receipt of a trigger from another facility. The motivation for this is twofold: firstly it will make it a world-leading facility for the study of fast fading transients and explosive phenomena discovered at early times. Secondly, it will enable large-scale programmes of low-to-intermediate resolution spectral classification of transients to be performed with great efficiency. In the target-rich environment of the LSST era, minimising acquisition overheads will be key to maximising the science gains from any follow-up programme. The telescope will have a diverse instrument suite which is simultaneously mounted for automatic changes, but it is envisaged that the primary instrument will be an intermediate resolution, optical/infrared spectrograph for scientific exploitation of transients discovered with the next generation of synoptic survey facilities. In this paper we outline the core science drivers for the telescope, and the requirements for the optical and mechanical design

    The embryo as moral work object: PGD/IVF staff views and experiences

    Get PDF
    Copyright @ 2008 the authors. This article is available in accordance with the Creative Commons Deed, Attribution 2.5, see http://creativecommons.org/licenses/by-nc-nd/2.5/deed.en_CA.We report on one aspect of a study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the field of preimplantation genetic diagnosis (PGD) for serious genetic disorders. The study produced an ethnography based on observation, interviews and ethics discussion groups with staff from two PGD/IVF Units in the UK. We focus here on staff perceptions of work with embryos that entails disposing of ‘affected’ or ‘spare’ embryos or using them for research. A variety of views were expressed on the ‘embryo question’ in contrast to polarised media debates. We argue that the prevailing policy acceptance of destroying affected embryos, and allowing research on embryos up to 14 days leaves some staff with rarely reported, ambivalent feelings. Staff views are under-researched in this area and we focus on how they may reconcile their personal moral views with the ethical framework in their field. Staff construct embryos in a variety of ways as ‘moral work objects’. This allows them to shift attention between micro-level and overarching institutional work goals, building on Casper's concept of ‘work objects’ and focusing on negotiation of the social order in a morally contested field.The Wellcome Trust Biomedical Ethics Programme, who funded the projects‘Facilitating choice, framing choice: the experience of staff working in pre-implantation genetic diagnosis’ (no: 074935), and ‘Ethical Frameworks for Embryo Donation:the views and practices of IVF/PGD staff’ (no: 081414)

    VDJdb: a curated database of T-cell receptor sequences with known antigen specificity

    Get PDF
    The ability to decode antigen specificities encapsulated in the sequences of rearranged T-cell receptor (TCR) genes is critical for our understanding of the adaptive immune system and promises significant advances in the field of translational medicine. Recent developments in high-throughput sequencing methods (immune repertoire sequencing technology, or RepSeq) and single-cell RNA sequencing technology have allowed us to obtain huge numbers of TCR sequences from donor samples and link them to T-cell phenotypes. However, our ability to annotate these TCR sequences still lags behind, owing to the enormous diversity of the TCR repertoire and the scarcity of available data on T-cell specificities. In this paper, we present VDJdb, a database that stores and aggregates the results of published T-cell specificity assays and provides a universal platform that couples antigen specificities with TCR sequences. We demonstrate that VDJdb is a versatile instrument for the annotation of TCR repertoire data, enabling a concatenated view of antigen-specific TCR sequence motifs. VDJdb can be accessed at https://vdjdb.cdr3.net and https://github.com/antigenomics/vdjdb-db
    corecore