919 research outputs found

    Brightness temperature and attenuation statistics at 20.6 and 31.65 GHz

    Get PDF
    Attenuation and brightness temperature statistics at 20.6 and 31.65 GHz are analyzed for a year's worth of data. The data were collected in 1988 at Denver and Platteville, Colorado. The locations are separated by 49 km. Single-station statistics are derived for the entire year. Quality control procedures are discussed and examples of their application are given

    The stratigraphic basis of the Anthropocene Event

    Get PDF
    This paper outlines the stratigraphic basis of a proposed Anthropocene Event. It considers a diachronous event framework to be more appropriate for understanding the Anthropocene than treating it as a new geological series/epoch. Four general categories of material evidence are identified as of particular relevance: ‘artificial’ strata with natural constituents; humanly modified ground; legacy sediments; and ‘natural’ geo-deposits containing artefactual material. All these arise from the interaction and mixing of human, natural, and hybrid human-natural forces. Taken together, such stratigraphic evidence supports the case for recognising the Anthropocene as an unfolding event

    Reopening the TNOs Color Controversy: Centaurs Bimodality and TNOs Unimodality

    Full text link
    We revisit the Trans-Neptunian Objects (TNOs) color controversy allegedly solved by Tegler and Romanishin 2003. We debate the statistical approach of the quoted work and discuss why it can not draw the claimed conclusions, and reanalyze their data sample with a more adequate statistical test. We find evidence for the existence of two color groups among the Centaurs. Therefore, mixing both centaurs and TNOs populations lead to the erroneous conclusion of a global bimodality, while there is no evidence for two color groups in the TNOs population alone. We use quasi-simultaneous visible color measurements published for 20 centaurs (corresponding to about half of the identified objects of this class), and conclude on the existence of two groups. With the surface evolution model of Delsanti et al. (2003) we discuss how the existence of two groups of Centaurs may be compatible with a continuous TNOs color distribution.Comment: 4 pages, 4 figures, accepted for publication in Astronomy and Astrophysics Letter

    Evolving classification of intensive care patients from event data

    Get PDF
    Objective: This work aims at predicting the patient discharge outcome on each hospitalization day by introducing a new paradigm—evolving classification of event data streams. Most classification algorithms implicitly assume the values of all predictive features to be available at the time of making the prediction. This assumption does not necessarily hold in the evolving classification setting (such as intensive care patient monitoring), where we may be interested in classifying the monitored entities as early as possible, based on the attributes initially available to the classifier, and then keep refining our classification model at each time step (e.g., on daily basis) with the arrival of additional attributes. / Materials and methods: An oblivious read-once decision-tree algorithm, called information network (IN), is extended to deal with evolving classification. The new algorithm, named incremental information network (IIN), restricts the order of selected features by the temporal order of feature arrival. The IIN algorithm is compared to six other evolving classification approaches on an 8-year dataset of adult patients admitted to two Intensive Care Units (ICUs) in the United Kingdom. / Results: Retrospective study of 3452 episodes of adult patients (≄ 16 years of age) admitted to the ICUs of Guy’s and St. Thomas’ hospitals in London between 2002 and 2009. Random partition (66:34) into a development (training) set n = 2287 and validation set n = 1165. Episode-related time steps: Day 0—time of ICU admission, Day x—end of the x-th day at ICU. The most accurate decision-tree models, based on the area under curve (AUC): Day 0: IN (AUC = 0.652), Day 1: IIN (AUC = 0.660), Day 2: J48 decision-tree algorithm (AUC = 0.678), Days 3–7: regenerative IN (AUC = 0.717–0.772). Logistic regression AUC: 0.582 (Day 0)—0.827 (Day 7). / Conclusions: Our experimental results have not identified a single optimal approach for evolving classification of ICU episodes. On Days 0 and 1, the IIN algorithm has produced the simplest and the most accurate models, which incorporate the temporal order of feature arrival. However, starting with Day 2, regenerative approaches have reached better performance in terms of predictive accuracy

    The Anthropocene is best understood as an ongoing, intensifying, diachronous event

    Get PDF
    Current debate on the status and character of the Anthropocene is focussed on whether this interval of geological time should be designated as a formal unit of epoch/series rank in the International Chronostratigraphic Chart/Geological Time Scale, or whether it is more appropriate for it to be considered as an informal ‘event’ comparable in significance with other major transformative events in deeper geological time. The case for formalizing the Anthropocene as a chronostratigraphical unit with a base at approximately 1950 CE is being developed by the Anthropocene Working Group of the Subcommission on Quaternary Stratigraphy. Here we outline the alternative position and explain why the time-transgressive nature of human impact on global environmental systems that is reflected in the recent stratigraphical record means that the Anthropocene is better seen not as a series/epoch with a fixed lower boundary, but rather as an unfolding, transforming and intensifying geological event

    Planet Formation in the Outer Solar System

    Get PDF
    This paper reviews coagulation models for planet formation in the Kuiper Belt, emphasizing links to recent observations of our and other solar systems. At heliocentric distances of 35-50 AU, single annulus and multiannulus planetesimal accretion calculations produce several 1000 km or larger planets and many 50-500 km objects on timescales of 10-30 Myr in a Minimum Mass Solar Nebula. Planets form more rapidly in more massive nebulae. All models yield two power law cumulative size distributions, N_C propto r^{-q} with q = 3.0-3.5 for radii larger than 10 km and N_C propto r^{-2.5} for radii less than 1 km. These size distributions are consistent with observations of Kuiper Belt objects acquired during the past decade. Once large objects form at 35-50 AU, gravitational stirring leads to a collisional cascade where 0.1-10 km objects are ground to dust. The collisional cascade removes 80% to 90% of the initial mass in the nebula in roughly 1 Gyr. This dust production rate is comparable to rates inferred for alpha Lyr, beta Pic, and other extrasolar debris disk systems.Comment: invited review for PASP, March 2002. 33 pages of text and 12 figure

    The role of the initial surface density profiles of the disc on giant planet formation: comparing with observations

    Get PDF
    In order to explain the main characteristics of the observed population of extrasolar planets and the giant planets in the Solar System, we need to get a clear understanding of which are the initial conditions that allowed their formation. To this end we develop a semi-analytical model for computing planetary systems formation based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. With this model we explore not only different initial discs profiles motivated by similarity solutions for viscous accretion discs, but we also consider different initial conditions to generate a variety of planetary systems assuming a large range of discs masses and sizes according to the last results in protoplanetary discs observations. We form a large population of planetary systems in order to explore the effects in the formation of assuming different discs and also the effects of type I and II regimes of planetary migration, which were found to play fundamental role in reproducing the distribution of observed exoplanets. Our results show that the observed population of exoplanets and the giant planets in the Solar System are well represented when considering a surface density profile with a power law in the inner part characterized by an exponent of -1, which represents a softer profile when compared with the case most similar to the MMSN model case.Comment: 14 pages, 12 figures, MNRAS, 412, 211

    The role of the initial surface density profiles of the disc on giant planet formation: comparing with observations

    Get PDF
    In order to explain the main characteristics of the observed population of extrasolar planets and the giant planets in the Solar System, we need to get a clear understanding of which are the initial conditions that allowed their formation. To this end we develop a semi-analytical model for computing planetary systems formation based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. With this model we explore not only different initial discs profiles motivated by similarity solutions for viscous accretion discs, but we also consider different initial conditions to generate a variety of planetary systems assuming a large range of discs masses and sizes according to the last results in protoplanetary discs observations. We form a large population of planetary systems in order to explore the effects in the formation of assuming different discs and also the effects of type I and II regimes of planetary migration, which were found to play fundamental role in reproducing the distribution of observed exoplanets. Our results show that the observed population of exoplanets and the giant planets in the Solar System are well represented when considering a surface density profile with a power law in the inner part characterized by an exponent of -1, which represents a softer profile when compared with the case most similar to the MMSN model case.Comment: 14 pages, 12 figures, MNRAS, 412, 211

    Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone

    Get PDF
    BACKGROUND New strains of meticillin-resistant Staphylococcus aureus (MRSA) may be associated with changes in rates of disease or clinical presentation. Conventional typing techniques may not detect new clonal variants that underlie changes in epidemiology or clinical phenotype. AIM To investigate the role of clonal variants of MRSA in an outbreak of MRSA bacteraemia at a hospital in England. METHODS Bacteraemia isolates of the major UK lineages (EMRSA-15 and -16) from before and after the outbreak were analysed by whole-genome sequencing in the context of epidemiological and clinical data. For comparison, EMRSA-15 and -16 isolates from another hospital in England were sequenced. A clonal variant of EMRSA-16 was identified at the outbreak hospital and a molecular signature test designed to distinguish variant isolates among further EMRSA-16 strains. FINDINGS By whole-genome sequencing, EMRSA-16 isolates during the outbreak showed strikingly low genetic diversity (P < 1 × 10(-6), Monte Carlo test), compared with EMRSA-15 and EMRSA-16 isolates from before the outbreak or the comparator hospital, demonstrating the emergence of a clonal variant. The variant was indistinguishable from the ancestral strain by conventional typing. This clonal variant accounted for 64/72 (89%) of EMRSA-16 bacteraemia isolates at the outbreak hospital from 2006. CONCLUSIONS Evolutionary changes in epidemic MRSA strains not detected by conventional typing may be associated with changes in disease epidemiology. Rapid and affordable technologies for whole-genome sequencing are becoming available with the potential to identify and track the emergence of variants of highly clonal organisms
    • 

    corecore