110 research outputs found

    Male hypogonadism and pre-diabetes interplay: association or causal interaction? A systematic review

    Get PDF
    Aim: The association between type 2 diabetes mellitus (T2DM) and male hypogonadism has been largely demonstrated. Testosterone (T) serum levels are often lower in men with T2DM compared to the general population, and, conversely, men with higher T serum levels have shown lower risk of T2DM. On the contrary, the association between pre-diabetes and male hypogonadism has been less investigated thus far. Pre-diabetes is a common clinical condition preceding T2DM and has been recognized as a potential risk factor for other metabolic disorders and cardiovascular diseases. Therefore, the aims of this review are to investigate the association between pre-diabetes and male hypogonadism and to evaluate the potential effect of T treatment on glucose metabolism and anti-diabetic therapy on T serum levels. Methods: We conducted this systematic review developing different literature searches, following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis protocol. Results: In our analysis, male hypogonadism has a prevalence of around 24%-35% in pre-diabetic men. Moreover, we observed improvement of metabolic parameters in pre-diabetes with T treatment. On the contrary, antidiabetic therapy seems to have no particular effects on T serum levels. Conclusion: Overall, we demonstrated that, although T administration could be considered in pre-diabetic men, pre-diabetes-related treatments should be confined to the control glucose metabolism, since no evidence for a positive effect on total T serum levels is available. Future research should be oriented to study the role of new antidiabetic drugs in the sex hormonal status in hypogonadal men

    Qualitative and quantitative analysis of doctor-patient interactions during andrological consultations

    Get PDF
    Although a trustworthy connection between doctor and patient is crucial in clinical practice, it could be hindered by different cultural and linguistic backgrounds. Moreover, an effective doctor-patient interaction could be even more challenging in andrological fields, in which psychological and social components are predominant

    Procedure for short-lived particle detection in the OPERA experiment and its application to charm decays

    Get PDF
    The OPERA experiment, designed to perform the first observation of ΜΌ→Μτ\nu_\mu \rightarrow \nu_\tau oscillations in appearance mode through the detection of the τ\tau leptons produced in Μτ\nu_\tau charged current interactions, has collected data from 2008 to 2012. In the present paper, the procedure developed to detect τ\tau particle decays, occurring over distances of the order of 1 mm from the neutrino interaction point, is described in detail. The results of its application to the search for charmed hadrons are then presented as a validation of the methods for Μτ\nu_\tau appearance detection

    Measurement of ISR-FSR interference in the processes e+ e- --> mu+ mu- gamma and e+ e- --> pi+ pi- gamma

    Get PDF
    Charge asymmetry in processes e+ e- --> mu+ mu- gamma and e+ e- --> pi+ pi- gamma is measured using 232 fb-1 of data collected with the BABAR detector at center-of-mass energies near 10.58 GeV. An observable is introduced and shown to be very robust against detector asymmetries while keeping a large sensitivity to the physical charge asymmetry that results from the interference between initial and final state radiation. The asymmetry is determined as afunction of the invariant mass of the final-state tracks from production threshold to a few GeV/c2. It is compared to the expectation from QED for e+ e- --> mu+ mu- gamma and from theoretical models for e+ e- --> pi+ pi- gamma. A clear interference pattern is observed in e+ e- --> pi+ pi- gamma, particularly in the vicinity of the f_2(1270) resonance. The inferred rate of lowest order FSR production is consistent with the QED expectation for e+ e- --> mu+ mu- gamma, and is negligibly small for e+ e- --> pi+ pi- gamma.Comment: 32 pages,29 figures, to be submitted to Phys. Rev.

    Osteoclasts Are Active in Bone Forming Metastases of Prostate Cancer Patients

    Get PDF
    BACKGROUND: Bone forming metastases are a common and disabling consequence of prostate cancer (CaP). The potential role of osteoclast activity in CaP bone metastases is not completely explained. In this study, we investigated ex vivo whether the osteolytic activity is present and how it is ruled in CaP patients with bone forming metastases. METHODOLOGY: Forty-six patients affected by newly diagnosed CaP and healthy controls were enrolled. At diagnosis, 37 patients had a primary tumour only, while 9 had primary tumour and concomitant bone forming metastases. In all patients there was no evidence of metastasis to other non-bone sites. For all patients and controls we collected blood and urinary samples. We evaluated patients' bone homeostasis; we made peripheral blood mononuclear cell (PBMC) cultures to detect in vitro osteoclastogenesis; we dosed serum expression of molecules involved in cancer induced osteoclatogenesis, such as RANKL, OPG, TNF-alpha, DKK-1 and IL-7. By Real-Time PCR, we quantified DKK-1 and IL-7 gene expression on micro-dissected tumour and healthy tissue sections. PRINCIPAL FINDINGS: CaP bone metastatic patients showed bone metabolism disruption with increased bone resorption and formation compared to non-bone metastatic patients and healthy controls. The CaP PBMC cultures showed an enhanced osteoclastogenesis in bone metastatic patients, due to an increase of RANKL/OPG ratio. We detected increased DKK-1 serum levels and tissue gene expression in patients compared to controls. IL-7 resulted high in patients' sera, but its tissue gene expression was comparable in patients and controls. CONCLUSIONS: We demonstrated ex vivo that osteoclastogenesis is an active mechanism in tumour nesting of bone forming metastatic cancer and that serum DKK-1 levels are increased in CaP patients, suggesting to deeply investigate its role as tumour marker

    Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling

    Get PDF
    With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as “the most complex thing in the universe.” The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Study of the e(+)e(-) -> K+K- reaction in the energy range from 2.6 to 8.0 GeV

    Get PDF
    The e+e−→K+K−e^+e^-\to K^+K^- cross section and charged-kaon electromagnetic form factor are measured in the e+e−e^+e^- center-of-mass energy range (EE) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb−1^{-1} of data collected with the BABAR detector at the PEP-II e+e−e^+e^- collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than 1/E21/E^2, and approaches the asymptotic QCD prediction. Production of the K+K−K^+K^- final state through the J/ψJ/\psi and ψ(2S)\psi(2S) intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in J/ψJ/\psi and ψ(2S)→K+K−\psi(2S)\to K^+K^- decays. The values of the branching fractions measured in the reaction e+e−→K+K−e^+e^- \to K^+K^- are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about ±5%\pm5\% for the J/ψJ/\psi meson and ±15%\pm15\% for the ψ(2S)\psi(2S) meson.Comment: 18 pages, 19 postscript figure

    Measurement of the J/ψ pair production cross-section in pp collisions at s=13 \sqrt{s}=13 TeV

    Get PDF
    The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 \sqrt{s}=13 TeV, corresponding to an integrated luminosity of 279 ±11 pb−1^{−1}. The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions.The production cross-section of J/ψJ/\psi pairs is measured using a data sample of pppp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 TeV\sqrt{s} = 13 \,{\mathrm{TeV}}, corresponding to an integrated luminosity of 279±11 pb−1279 \pm 11 \,{\mathrm{pb^{-1}}}. The measurement is performed for J/ψJ/\psi mesons with a transverse momentum of less than 10 GeV/c10 \,{\mathrm{GeV}}/c in the rapidity range 2.0<y<4.52.0<y<4.5. The production cross-section is measured to be 15.2±1.0±0.9 nb15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψJ/\psi pair are measured and compared to theoretical predictions

    Measurement of forward W→eÎœW\to e\nu production in pppp collisions at s=8 \sqrt{s}=8\,TeV

    Get PDF
    A measurement of the cross-section for W→eÎœW \to e\nu production in pppp collisions is presented using data corresponding to an integrated luminosity of 2 2\,fb−1^{-1} collected by the LHCb experiment at a centre-of-mass energy of s=8 \sqrt{s}=8\,TeV. The electrons are required to have more than 20 20\,GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive WW production cross-sections, where the WW decays to eÎœe\nu, are measured to be \begin{align*} \begin{split} \sigma_{W^{+} \to e^{+}\nu_{e}}&=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb},\\ \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}&=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{split} \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The W+/W−W^{+}/W^{-} cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of WW boson branching fractions is determined to be \begin{align*} \begin{split} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{split} \end{align*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W→eÎœW \to e\nu production in pppp collisions is presented using data corresponding to an integrated luminosity of 2 2\,fb−1^{-1} collected by the LHCb experiment at a centre-of-mass energy of s=8 \sqrt{s}=8\,TeV. The electrons are required to have more than 20 20\,GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive WW production cross-sections, where the WW decays to eÎœe\nu, are measured to be \begin{equation*} \sigma_{W^{+} \to e^{+}\nu_{e}}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb}, \end{equation*} \begin{equation*} \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{equation*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The W+/W−W^{+}/W^{-} cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of WW boson branching fractions is determined to be \begin{equation*} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{equation*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W → eÎœ production in pp collisions is presented using data corresponding to an integrated luminosity of 2 fb−1^{−1} collected by the LHCb experiment at a centre-of-mass energy of s=8 \sqrt{s}=8 TeV. The electrons are required to have more than 20 GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive W production cross-sections, where the W decays to eÎœ, are measured to be σW+→e+Îœe=1124.4±2.1±21.5±11.2±13.0pb, {\sigma}_{W^{+}\to {e}^{+}{\nu}_e}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\kern0.5em \mathrm{p}\mathrm{b}, σW−→e−Μ‟e=809.0±1.9±18.1±7.0±9.4 pb, {\sigma}_{W^{-}\to {e}^{-}{\overline{\nu}}_e}=809.0\pm 1.9\pm 18.1\pm \kern0.5em 7.0\pm \kern0.5em 9.4\,\mathrm{p}\mathrm{b}, where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination
    • 

    corecore