135 research outputs found
The Social Effects of Entrepreneurship on Society and Some Potential Remedies: Four Provocations
A rapidly growing research stream examines the social effects of entrepreneurship on society. This research assesses the rise of entrepreneurship as a dominant theme in society and studies how entrepreneurship contributes to the production and acceptance of socio-economic inequality regimes, social problems, class and power struggles, and systemic inequities. In this article, scholars present new perspectives on an organizational sociology-inspired research agenda of entrepreneurial capitalism and detail the potential remedies to bound the unfettered expansion of a narrow conception of entrepreneurship. Taken together, the essays put forward four central provocations: 1) reform the study and pedagogy of entrepreneurship by bringing in the humanities; 2) examine entrepreneurship as a cultural phenomenon shaping society; 3) go beyond the dominant biases in entrepreneurship research and pedagogy; and 4) explore alternative models to entrepreneurial capitalism. More scholarly work scrutinizing the entrepreneurshipβsociety nexus is urgently needed, and these essays provide generative arguments toward further developing this research agenda
Population-Attributable Risk Estimates for Risk Factors Associated with Campylobacter Infection, Australia
One-sentence summary: Each year, an estimated 50,500 cases in persons >5 years of age can be directly attributed to consumption of chicken
Thermal error modelling of a gantry-type 5-axis machine tool using a Grey Neural Network Model
This paper presents a new modelling methodology for compensation of the thermal errors on a gantry-type 5-axis CNC machine tool. The method uses a βGrey Neural Network Model with Convolution Integralβ (GNNMCI(1, N)), which makes full use of the similarities and complementarity between Grey system models and artificial neural networks (ANNs) to overcome the disadvantage of applying either model in isolation. A Particle Swarm Optimisation (PSO) algorithm is also employed to optimise the proposed Grey neural network. The size of the data pairs is crucial when the generation of data is a costly affair, since the machine downtime necessary to acquire the data is often considered prohibitive. Under such circumstances, optimisation of the number of data pairs used for training is of prime concern for calibrating a physical model or training a black-box model. A Grey Accumulated Generating Operation (AGO), which is a basis of the Grey system theory, is used to transform the original data to a monotonic series of data, which has less randomness than the original series of data. The choice of inputs to the thermal model is a non-trivial decision which is ultimately a compromise between the ability to obtain data that sufficiently correlates with the thermal distortion and the cost of implementation of the necessary feedback sensors. In this study, temperature measurement at key locations was supplemented by direct distortion measurement at accessible locations. This form of data fusion simplifies the modelling process, enhances the accuracy of the system and reduces the overall number of inputs to the model, since otherwise a much larger number of thermal sensors would be required to cover the entire structure. The Z-axis heating test, C-axis heating test, and the combined (helical) movement are considered in this work. The compensation values, calculated by the GNNMCI(1, N) model were sent to the controller for live error compensation. Test results show that a 85% reduction in thermal errors was achieved after compensation
Exploring the relationship between carbon performance, carbon reporting and firm performance: A conceptual paper
In recent years, there has been an increased interest in carbon information disclosure.This research aims to examine carbon reporting practices of Malaysian companies.Further analysis will be conducted to examine the influence of internal organizational factors on the carbon reporting practices.The relationship between carbon performance, carbon reporting and firm performance will be investigated. This paper also explores the moderating effect of the corporate governance quality on the relationship between carbon reporting practices and firm performance.The findings from this study have a significant contribution to carbon reporting literature, Malaysian companies, government and accounting regulation body
An Open Label, Adaptive, Phase 1 Trial of High-Dose Oral Nitazoxanide in Healthy Volunteers: An Antiviral Candidate for SARS-CoV-2.
Funder: UnitaidRepurposing approved drugs may rapidly establish effective interventions during a public health crisis. This has yielded immunomodulatory treatments for severe coronavirus disease 2019 (COVID-19), but repurposed antivirals have not been successful to date because of redundancy of the target in vivo or suboptimal exposures at studied doses. Nitazoxanide is a US Food and Drug Administration (FDA) approved antiparasitic medicine, that physiologically-based pharmacokinetic (PBPK) modeling has indicated may provide antiviral concentrations across the dosing interval, when repurposed at higher than approved doses. Within the AGILE trial platform (NCT04746183) an open label, adaptive, phase I trial in healthy adult participants was undertaken with high-dose nitazoxanide. Participants received 1,500Β mg nitazoxanide orally twice-daily with food for 7Β days. Primary outcomes were safety, tolerability, optimum dose, and schedule. Intensive pharmacokinetic (PK) sampling was undertaken day 1 and 5 with minimum concentration (Cmin ) sampling on days 3 and 7. Fourteen healthy participants were enrolled between February 18 and May 11, 2021. All 14 doses were completed by 10 of 14 participants. Nitazoxanide was safe and with no significant adverse events. Moderate gastrointestinal disturbance (loose stools or diarrhea) occurred in 8 participants (57.1%), with urine and sclera discoloration in 12 (85.7%) and 9 (64.3%) participants, respectively, without clinically significant bilirubin elevation. This was self-limiting and resolved upon drug discontinuation. PBPK predictions were confirmed on day 1 but with underprediction at day 5. Median Cmin was above the in vitro target concentration on the first dose and maintained throughout. Nitazoxanide administered at 1,500Β mg b.i.d. with food was safe with acceptable tolerability a phase Ib/IIa study is now being initiated in patients with COVID-19
Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three-dimensional local earthquake P- and S-wave tomography
The subduction plate interface along the Nicoya Peninsula, Costa Rica, generates damaging large (Mw > 7.5) earthquakes. We present hypocenters and 3-D seismic velocity models (VP and VP/VS) calculated using simultaneous inversion of P- and S-wave arrival time data recorded from small magnitude, local earthquakes to elucidate seismogenic zone structure. In this region, interseismic cycle microseismicity does not uniquely define the potential rupture extent of large earthquakes. Plate interface microseismicity extends from 12 to 26 and from 17 to 28 km below sea level beneath the southern and northern Nicoya Peninsula, respectively. Microseismicity offset across the plate suture of East Pacific Rise-derived and Cocos-Nazca Spreading Center-derived oceanic lithosphere is βΌ5 km, revising earlier estimates suggesting βΌ10 km of offset. Interplate seismicity begins downdip of increased locking along the plate interface imaged using GPS and a region of low VP along the plate interface. The downdip edge of plate interface microseismicity occurs updip of the oceanic slab and continental Moho intersection, possibly due to the onset of ductile behaviour. Slow forearc mantle wedge P-wave velocities suggest 20β30 per cent serpentinization across the Nicoya Peninsula region while calculated VP/VS values suggest 0β10 per cent serpentinization. Interpretation of VP/VS resolution at depth is complicated however due to ray path distribution. We posit that the forearc mantle wedge is regionally serpentinized but may still be able to sustain rupture during the largest seismogenic zone earthquakes
Insights from computational modeling in inflammation and acute rejection in limb transplantation
Acute skin rejection in vascularized composite allotransplantation (VCA) is the major obstacle for wider adoption in clinical practice. This study utilized computational modeling to identify biomarkers for diagnosis and targets for treatment of skin rejection. Protein levels of 14 inflammatory mediators in skin and muscle biopsies from syngeneic grafts [n = 10], allogeneic transplants without immunosuppression [n = 10] and allografts treated with tacrolimus [n = 10] were assessed by multiplexed analysis technology. Hierarchical Clustering Analysis, Principal Component Analysis, Random Forest Classification and Multinomial Logistic Regression models were used to segregate experimental groups. Based on Random Forest Classification, Multinomial Logistic Regression and Hierarchical Clustering Analysis models, IL-4, TNF-Ξ± and IL-12p70 were the best predictors of skin rejection and identified rejection well in advance of histopathological alterations. TNF-Ξ± and IL-12p70 were the best predictors of muscle rejection and also preceded histopathological alterations. Principal Component Analysis identified IL-1Ξ±, IL-18, IL-1Ξ², and IL-4 as principal drivers of transplant rejection. Thus, inflammatory patterns associated with rejection are specific for the individual tissue and may be superior for early detection and targeted treatment of rejection. Β© 2014 Wolfram et al
DNA Fragmentation Simulation Method (FSM) and Fragment Size Matching Improve aCGH Performance of FFPE Tissues
Whole-genome copy number analysis platforms, such as array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) arrays, are transformative research discovery tools. In cancer, the identification of genomic aberrations with these approaches has generated important diagnostic and prognostic markers, and critical therapeutic targets. While robust for basic research studies, reliable whole-genome copy number analysis has been unsuccessful in routine clinical practice due to a number of technical limitations. Most important, aCGH results have been suboptimal because of the poor integrity of DNA derived from formalin-fixed paraffin-embedded (FFPE) tissues. Using self-hybridizations of a single DNA sample we observed that aCGH performance is significantly improved by accurate DNA size determination and the matching of test and reference DNA samples so that both possess similar fragment sizes. Based on this observation, we developed a novel DNA fragmentation simulation method (FSM) that allows customized tailoring of the fragment sizes of test and reference samples, thereby lowering array failure rates. To validate our methods, we combined FSM with Universal Linkage System (ULS) labeling to study a cohort of 200 tumor samples using Agilent 1 M feature arrays. Results from FFPE samples were equivalent to results from fresh samples and those available through the glioblastoma Cancer Genome Atlas (TCGA). This study demonstrates that rigorous control of DNA fragment size improves aCGH performance. This methodological advance will permit the routine analysis of FFPE tumor samples for clinical trials and in daily clinical practice
Has Selection for Improved Agronomic Traits Made Reed Canarygrass Invasive?
Plant breeders have played an essential role in improving agricultural crops, and their efforts will be critical to meet the increasing demand for cellulosic bioenergy feedstocks. However, a major concern is the potential development of novel invasive species that result from breeders' efforts to improve agronomic traits in a crop. We use reed canarygrass as a case study to evaluate the potential of plant breeding to give rise to invasive species. Reed canarygrass has been improved by breeders for use as a forage crop, but it is unclear whether breeding efforts have given rise to more vigorous populations of the species. We evaluated cultivars, European wild, and North American invader populations in upland and wetland environments to identify differences in vigor between the groups of populations. While cultivars were among the most vigorous populations in an agricultural environment (upland soils with nitrogen addition), there were no differences in above- or below-ground production between any populations in wetland environments. These results suggest that breeding has only marginally increased vigor in upland environments and that these gains are not maintained in wetland environments. Breeding focuses on selection for improvements of a specific target population of environments, and stability across a wide range of environments has proved elusive for even the most intensively bred crops. We conclude that breeding efforts are not responsible for wetland invasion by reed canarygrass and offer guidelines that will help reduce the possibility of breeding programs releasing cultivars that will become invasive
RNA-binding proteins in human oogenesis:Balancing differentiation and self-renewal in the female fetal germline
Primordial germ cells undergo three significant processes on their path to becoming primary oocytes: the initiation of meiosis, the formation and breakdown of germ cell nests, and the assembly of single oocytes into primordial follicles. However at the onset of meiosis, the germ cell becomes transcriptionally silenced. Consequently translational control of pre-stored mRNAs plays a central role in coordinating gene expression throughout the remainder of oogenesis; RNA binding proteins are key to this regulation. In this review we examine the role of exemplars of such proteins, namely LIN28, DAZL, BOLL and FMRP, and highlight how their roles during germ cell development are critical to oogenesis and the establishment of the primordial follicle pool
- β¦