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Primordial germ cells undergo three significant processes on their path to becoming primary oocytes: the initia-
tion of meiosis, the formation and breakdown of germ cell nests, and the assembly of single oocytes into primor-
dial follicles. However at the onset of meiosis, the germ cell becomes transcriptionally silenced. Consequently
translational control of pre-storedmRNAs plays a central role in coordinating gene expression throughout the re-
mainder of oogenesis; RNA binding proteins are key to this regulation. In this review we examine the role of ex-
emplars of such proteins, namely LIN28, DAZL, BOLL and FMRP, and highlight how their roles during germ cell
development are critical to oogenesis and the establishment of the primordial follicle pool.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The finite nature of human female fertility is underpinned by the for-
mation of a non-renewable reserve of primordial follicles that are as-
sembled from mid-gestation onwards in humans (reviewed in
(Findlay et al., 2015)). Establishment of the ovarian reserve begins
with the migration of primordial germ cells (PGCs) from the proximal
epiblast to the genital ridge; a process already underway in the
human embryo at four weeks of development (Witschi, 1948;
Mollgard et al., 2010), and which is largely complete by the eighth
week of gestation (6weeks post conception) (De Felici, 2013). Upon ar-
rival at the gonad, and following female sex specification, PGCs undergo
three significant, overlapping and possibly interconnected processes on
their journey to becoming functional oocytes, namely: the initiation of
meiosis, the formation and breakdown of germ cell nests, and the as-
sembly of single oocytes into primordial follicles. It is these follicles
which constitute the ovarian reserve for the adult life of women, and
the developmental events prior to, and during their foundation, that
lay the foundations of developmental competence required to form an
oocyte that is capable of fertilisation in adult life.
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1.1. Forming follicles

The formation of primordial follicles begins around 16 weeks gesta-
tion in humans (Motta et al., 1997; Bendsen et al., 2006), as nests of in-
terconnected germ cells break down, releasing individual oocytes to
associate with somatic pre-granulosa cells to form primordial follicles.
The germ cell nest is an evolutionarily conserved structure, found in
males and females fromDrosophila (de Cuevas et al., 1997) and Xenopus,
tomice (Pepling et al., 1999) and humans (Motta et al., 1997; Gondos et
al., 1971). Nests form as a result of incomplete cytokinesis during germ
cell mitosis, leading to the formation of a clonal syncytium of germ cells
that divide synchronously and share cytoplasm (Grive and Freiman,
2015). Organelles are exchanged between interconnected germ cells
in nests, and their distribution is reorganised just prior to nest break-
down in mice (Pepling and Spradling, 2001), a process linked to the se-
lection of a single oocyte (Lei and Spradling, 2016). Nest breakdown is a
coordinated effort involving the loss of germ cells through caspase-de-
pendant apoptosis and physical invasion of the nests by somatic cells
(Tingen et al., 2009). It is estimated that up to two-thirds of all germ
cells are lost during nest breakdown (Pepling and Spradling, 2001).
This culling of germ cells may represent a means of germ cell selection,
through which deficient cells are lost and only the highest quality oo-
cytes are assembled into primordial follicles.

In humans, the first primordial follicles to form are located deep
within the centre of the fetal ovarian medulla, whilst undifferentiated,
mitotic germ cells, with characteristics of PGCs, are found towards the
periphery of the ovary (Fig. 1). The human fetal ovary shows distinct
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. LIN28, DAZL, BOLL and FMRP expression during germ cell differentiation in females. Cartoon schematic depicts spatial and temporal organisation of germ cells within the human
fetal ovary. Germ cells at different stages of maturation are represented by progressively darker shades of orange. LIN28 is present in PGCs. DAZL is expressed before the onset of meiosis
but down-regulated afterwards; BOLL is transiently expressed at later stages ofmeiosiswithminimal overlapwith DAZL. DAZL is re-expressed in oocyteswithin primordial follicles. FMRP
is present in pre-meiotic germ cells, and yellow dots represent granulation of FMRP staining at the onset of meiosis (Section 2.4).
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spatial and temporal organisation, with more differentiated germ cells
found progressively deeper into the ovary, establishing a distinct devel-
opmental gradient (Anderson et al., 2007; Childs and Anderson, 2012).
Thus, the entire developmental spectrum fromPGC to primordial follicle
can be observed on a single histological section by 18 weeks' gestation,
providing an excellent developmental paradigm in which to study the
process of cellular differentiation (He et al., 2013a). Similar processes
occur in the sheep and cow (Sawyer et al., 2002; Hummitzsch et al.,
2013). This cortico-medullary gradient of increasing germ cell differen-
tiation differs from that of the fetal mouse ovary, in which differentia-
tion proceeds in an anterior to posterior (Menke et al., 2003; Bullejos
and Koopman, 2004) and possibly dorsal-ventral (Cordeiro et al.,
2015) wave along the gonadal axis. Why such differences exist is not
clear, but may reflect the need to maintain niches for undifferentiated,
proliferating germ cells, which persist alongside more differentiated
meiotic germ cells and follicular oocytes in the developing ovaries of
larger mammals (Fereydouni et al., 2014; Fulton et al., 2005). In con-
trast, in the ovaries of feto-neonatal rodents (Kimura et al., 2011),
germ cell proliferation is largely complete before themajor wave of fol-
licle assembly commences. Despite these differences, however, the as-
sembly of the first follicles occurs at the centre of the developing
ovary in both humans and mice, suggesting some aspects of the
spatio-temporal regulation of germ cell differentiation may be con-
served (Mork et al., 2012; Zheng et al., 2014).

1.2. Meiosis

The initiation of meiosis is one of the defining features of germ cell
differentiation, and occurs during fetal life in females, as opposed to
from puberty in males. Although comprised of two rounds of cell divi-
sion, only prophase of meiosis I occurs during fetal oogenesis, with ar-
rest occurring before completion of the first division. The timing of
meiotic entry is not intrinsic to germ cells themselves, but rather de-
pends on exposure to retinoic acid produced by themesonephros in ro-
dents (Bowles et al., 2006; Koubova et al., 2006), but probably by the
fetal ovary itself in humans (Childs et al., 2011; Le Bouffant et al.,
2010; Bowles et al., 2016; Frydman et al., 2017).

Followingpre-meiotic DNA replication, germ cellswithin nests enter
leptotene of prophase I and initiate recombination by generating double
strand DNA breaks (Roig et al., 2004; Baudat et al., 2013), leading to the
pairing and synapsis of homologous chromosomes during zygotene.
The synaptonemal complex, which holds synapsed chromosomes to-
gether, is assembled by pachytene, and throughout zygotene and
Please cite this article as: Rosario, R., et al., RNA-binding proteins in huma
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pachytene, meiotic recombination generates crossovers, which not
only increase genetic diversity, but also provide physical connections
that keep homologous chromosomes together once the synaptonemal
complex dissociates in diplotene (Petronczki et al., 2003; MacLennan
et al., 2015). Following diplotene, the oocytes enter a period of meiotic
(dictyate) and growth arrest, and the nests of interconnected oocytes
break down, releasing individual oocytes to form primordial follicles.
The oocytes are then maintained in this arrested state until oocyte
growth is initiated, a hiatus that can extend to decades in humans. Al-
though oocyte growth occurs throughout follicle development, meiosis
only recommences at the time of ovulation. During this prolonged
period in stasis, cohesion proteins are important in maintaining the
physical linkage between sister chromatids, and deterioration in
chromatid cohesion contributes significantly to age-dependent
aneuploidy (Jessberger, 2012; Herbert et al., 2015).

Whether germcell nest breakdown and primordial follicle formation
are tied to proper meiotic progression remains unclear. Depletion of
synaptonemal complex protein 1 (Sycp1) in fetal rat ovaries (to acceler-
ate the onset of diplotene) resulted in primordial follicles being assem-
bled earlier and in greater numbers than in control ovaries, suggesting
an intricate relationship between diplotene arrest and primordial folli-
cle formation (Paredes et al., 2005). However, the ovaries of Stra8−/−

mice (in which germ cells fail to initiate meiosis) contain ‘oocyte-like’
cells and follicular structures, suggesting thatmeiosis and oogenesis/fol-
licle formation may be uncoupled, although the failure of such oocyte-
like cells to support development confirms that meiosis is essential to
confer reproductive potential (Dokshin et al., 2013; Baltus et al., 2006).

2. RNA-binding proteins in fetal oogenesis

Mammalian gametogenesis, and particularly oogenesis, is punctuat-
ed by periods of transcriptional silencing, during which homeostasis
and development are dependent on the translation of pre-transcribed
mRNAs, under the regulation of RNA-binding proteins (RBPs) (Clarke,
2012; Seydoux and Braun, 2006; Radford et al., 2008). RBPs are an ex-
tensive class of proteins, defined by their ability to recognise particular
motifs and bind RNA via specific recognition sites usually found in 3′ un-
translated regions (3′UTRs). RBPs found in the cell nucleus primarily
govern nascent mRNA (pre-mRNA) processing events (capping,
polyadenylation and splicing), whilst those located in the cytoplasm
are known to regulate translation by directingmRNA transport and reg-
ulatingmRNA stability (Brook et al., 2009). Importantly, RBPs are highly
expressed during oogenesis and have been well documented as being
n oogenesis: Balancing differentiation and self-renewal in the female
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an essential component of post-transcriptional control during all stages
of germ cell development. Animal knockout models of germ cell-
expressed RBPs often exhibit various stages of developmental arrest
during gametogenesis and resultant infertility (Ruggiu et al., 1997;
VanGompel and Xu, 2010; Tay and Richter, 2001). Therefore research
surrounding themechanisms utilised by RBPs during germ cell develop-
ment is critical to our overall understanding of oogenesis and the estab-
lishment of the ovarian reserve. In this review we examine the role of
such RBPs, specifically LIN28, DAZL, BOLL and FMRP, in initiating and
sustaining germ cell development in the human fetal ovary (Fig. 1),
and highlight recent findings made by ourselves and others in this
regard.

2.1. LIN28: balancing oogonial differentiation and self-renewal?

The RNA-binding protein LIN28 is a critical regulator of cellular
pluripotency, differentiation, survival and homeostasis across a diverse
range of tissues (Shyh-Chang and Daley, 2013). Lin28 is required for
normal specification of the PGC population (West et al., 2009), and
Lin28−/− mice have reduced germ cell numbers at e13.5 and birth,
and form fewer primordial follicles (Shinoda et al., 2013). We, and
others, observed developmentally-regulated expression of LIN28 in
the human fetal ovary, with expression decreasing with increasing ges-
tation (Childs et al., 2012; El-Khairi et al., 2012). Consistent with PGC-
specific expression of Lin28 in the mouse, we found LIN28 to be
expressed exclusively by germ cells in the human fetal ovary (Fig. 2),
and restricted to primordial and premeiotic germ cells (Childs et al.,
2012). We observed no change in expression across gestation of the
paralogous gene LIN28B, which has been implicated in the pathogenesis
of ovarian cancer (Permuth-Wey et al., 2011) and the timing of menar-
che (Perry et al., 2009; Ong et al., 2009). The cell type(s) expressing
LIN28B in the human fetal ovary remain to be determined (Childs et
al., 2012; El-Khairi et al., 2012).

In addition to its pluripotency-associated role in ES cells, Lin28 is also
required for the maintenance of tissue-specific progenitor cells in the
developing embryo (Urbach et al., 2014; Yang et al., 2015), and for the
Fig. 2. LIN28, DAZL and BOLL expression in human fetal ovary. Tiled image of 15wga human
(arrowheads), whilst DAZL positive germ cells (green) are more mature and located further f
and have a larger diameter size (asterisks). There is no co-localisation between LIN28, DAZL or

Please cite this article as: Rosario, R., et al., RNA-binding proteins in huma
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differentiation of the first germ layers in Xenopus embryos (Faas et al.,
2013), suggesting roles for LIN28 in the regulation of differentiation as
well as the maintenance of stem cell identity (Tsialikas and Romer-
Seibert, 2015). Consistent with this, we noted that LIN28 expression
persists beyond that of the pluripotency-associated transcription factor
OCT4/POU5F1 in human fetal germ cells, but is extinguished before the
onset of meiosis (as evidenced by the absence of SYCP3 and LIN28 co-
expression) (Childs et al., 2012). Together, these data indicate that
LIN28 may have regulate both the maintenance of undifferentiated
PGCs and the earliest steps of oogenesis, following commitment to dif-
ferentiation and the loss of ‘stemness’ in PGCs.

Although LIN28 can regulate translation of targetmRNAs throughdi-
rect binding, it also acts to antagonise the activity of the let-7 family of
microRNAs (Shyh-Chang and Daley, 2013; Huang, 2012). In the
human fetal ovary let-7 microRNA expression mirrors that of LIN28
(Childs et al., 2012), suggesting that the high levels of LIN28 in undiffer-
entiated germ cells may be required to restrict high levels of let-7 tran-
scripts at this stage. Indeed, the balance of these factors in the fetal
germline seems critical, as overexpression of let-7 in fetalmouse ovaries
recapitulates the infertility phenotype seen in Lin28-deficient mice
(Shinoda et al., 2013). Conversely, elevated LIN28 levels in human
germ cell tumours (GCTs) correlate with decreased let-7 microRNA
levels, and increased expression of oncogenemRNAs subject to negative
regulation by let-7 (such as MYCN) (Murray et al., 2013), which in turn
may contribute to themolecular pathogenesis of GCTs, and indeedother
cancers (Molenaar et al., 2012; Powers et al., 2016). Human GCTs are
widely thought to arise from germ cells that aberrantly retain, or re-ac-
quire, the expression of PGC ‘stem cell’markers, thus a role for LIN28 in
the pathogenesis of GCTs reinforces the case for this protein being in-
volved in balancing self-renewal and/or differentiation in human fetal
germ cells. Intriguing recent data suggests that both the self-renewal
and meiotic differentiation programmes may be activated simulta-
neously in pre-invasive male GCT cells (known as carcinoma in situ
(CIS) (Jorgensen et al., 2013). It is therefore tempting to speculate that
tighter regulation of the transition from self-renewal to meiotic differ-
entiation in the fetal female germ cell may underpin the profound
fetal ovary section depicts LIN28 positive germ cells (red) in the periphery of the ovary
rom the ovary edge (arrows). BOLL positive germ cells (blue) are more centrally located
BOLL (as observed in merge image).
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differences in the frequency of GCTs between males and females (GCTs
account for 98%of testicular, but only 2–3%of ovarian cancers) (Bosl and
Motzer, 1997; Permuth-Wey and Sellers, 2009). Close examination of
the molecular phenotype and dynamics of germ cell proliferation and
differentiation in the Lin28−/− fetal mouse ovary may provide further
insight into this.
2.2. DAZL: gatekeeper of meiosis?

DAZL (deleted in azoospermia-like) encodes a proteinwhichbelongs
to the DAZ family of RBPs along with homologue members DAZ and
BOLL (previously known as BOULE; discussed below in Section 2.3).
DAZL contains two functional domains: a highly conserved RNA recog-
nition motif (RRM) and a single DAZ domain (of unknown function)
unique to DAZ family proteins. Only found in vertebrates,DAZL is specif-
ically expressed in germ cells at all stages of oogenesis. In the human
fetal ovary,DAZL transcript and protein expression increases sharply be-
tween 9 weeks (first trimester) and 14 weeks (early second trimester)
gestation (Anderson et al., 2007; He et al., 2013b). This increase in ex-
pression immediately precedes the onset of meiosis. During this period,
DAZL protein undergoes a shift in localisation from the nucleus (where
it may have a role in RNA processing and storage) to the cytoplasm,
where it is expected to function as a regulator of translation
(Anderson et al., 2007; Reynolds and Cooke, 2005). Such a transition
has also been observed in human fetal and adult mouse testis, where
it coincides with the differentiation of fetal gonocytes and spermatogo-
nia, respectively (Reijo et al., 2000). This would suggest that the
relocalisation of DAZL protein is indicative of a potential shift in function
between pre-meiotic and meiotic germ cells.

DAZL expression is subsequently down-regulation as meiosis pro-
gresses, but is re-expressed in oocytes of newly-formed primordial fol-
licles (He et al., 2013b). How this biphasic pattern of DAZL expression is
achieved remains unclear, but it bears a striking resemblance to that of
KIT. In the human fetal ovary (and that of other species) KIT is expressed
in pre/early-meiotic germ cells, downregulated during progression
throughmeiotic prophase, and then re-expressed by oocytes assembled
into primordial follicles (Robinson et al., 2001; Hoyer et al., 2005; Hutt
et al., 2006). Whether KIT signalling has a role in regulating DAZL ex-
pression is unknown, but this raises a broader question of how RBPs
in germ cells act as effectors of the plethora of growth factors to which
germcells are exposed (andaboutwhichwe knownvery little). Dazl ex-
pression persists through later stages of oocyte maturation including
through to zygote formation, where Dazl-dependent translation is
thought to be necessary for spindle assembly, the metaphase I-II transi-
tion and early embryo development (Chen et al., 2011).

As previously mentioned, the timing of meiotic entry in germ cells is
dependent upon exposure to retinoic acid. However, DAZL plays an im-
portant role in this, as it acts as a meiotic competence factor, enabling
germ cells to respond to the meiosis-inducing signal. In the absence of
DAZL, germ cells fail to develop beyond the PGC stage (shown by con-
tinued expression of pluripotency markers), giving rise to the concept
that DAZL is a ‘licensing factor’ required for meiotic entry (Gill et al.,
2011). Furthermore, the germ cell-specific expression of Dazl distin-
guishes germ cells from ovarian somatic cells (Lin et al., 2008), thus en-
suring only the former respond to retinoic acid by entering meiosis.
Retinoic acid induces the expression of the gene Stra8 (Stimulated by
retinoic acid 8), which in turn is required for the first critical steps of
meiosis (Anderson et al., 2008). Germ cells in Dazl-deficient ovaries
have significantly reduced expression of Stra8, which suggests that
Dazl has an essential function upstream of meiotic initiation (Lin et al.,
2008). Furthermore, as Dazl is not abundantly expressed in migrating
PGCs, this prevents germ cells from responding to retinoic acid they
might encounter during their migration to the genital ridge (Spiller et
al., 2012). Upon reaching the gonad Dazl expression is activated, per-
mitting germ cell responsiveness to cues from the somatic environment
Please cite this article as: Rosario, R., et al., RNA-binding proteins in huma
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(Feng et al., 2014). However, the mechanism by which Dazl achieves
this is currently unclear.

The phenotype of Dazl deficiency has been studied in detail in mice.
Dazl−/−mice are infertile due to defects in germ cell differentiation and
a failure to progress beyond leptotene of meiotic prophase I (Ruggiu et
al., 1997; Gill et al., 2011; Haston et al., 2009; Schrans-Stassen et al.,
2001).Dazl-null gonads of both sexes also show a loss of post-migratory
PGCs, although the severity of this is highly variable between individual
animals (Saunders et al., 2003). Indeed, the overall phenotype of Dazl
deficiency is more consistent and pronounced in inbred C57BL/6 mice
(Lin and Page, 2005) than in non-inbred mice (Ruggiu et al., 1997;
Schrans-Stassen et al., 2001; Saunders et al., 2003). For example, studies
conducted in mice of a mixed genetic background suggest that Dazl is
essential for the development of XY germ cells only after birth, yet on
an inbred (C57BL/6) background, male Dazl−/− mice lose their germ
cells as early as e14.5, with the requirement for Dazl manifesting itself
around the time that germ cells lose pluripotency and commit to a sper-
matogenic fate (Lin and Page, 2005).

If genetic heterogeneity is the cause of this variability in Dazl−/−

mice phenotypes (Saunders et al., 2003), this raises the question as to
whether genetic background may also influence our understanding of
DAZL-deficiency phenotypes in humans. Some evidence suggests this
in fact is the case: deletion of DAZ gene(s) results in highly variable tes-
ticular defects ranging from complete germ cell absence, spermatogenic
arrest with formation of few spermatids or severe oligozoospermia
(Reijo et al., 1995; Reijo et al., 1996). Furthermore, single nucleotide
polymorphisms in DAZL have been correlated with total sperm count,
sperm motility, age at menopause and primary ovarian insufficiency
(POI), in infertile men and women, respectively (Teng et al., 2002;
Tung et al., 2006). However these studieswere carried out in Asian pop-
ulations, and attempts to replicate these findings in Caucasian popula-
tions have been unsuccessful (Bartoloni et al., 2004; Zerbetto et al.,
2008).

The majority of current evidence points towards DAZL being an en-
hancer of translation. DAZL is associated with actively translating poly-
somes (Maegawa et al., 2002; Tsui et al., 2000) and sucrose gradient
analysis of translation intermediates revealed Dazl specifically stimu-
lates translation through regulation of the initiation stage (Collier et
al., 2005). Furthermore in mouse, Dazl has been shown to stimulate
the translation of Mvh, Sycp3 and Tex19.1 mRNAs (Chen et al., 2011;
Reynolds et al., 2007; Reynolds et al., 2005). Therefore Chen et al.
(2014) were surprised to find Dazl interacting with RNA processing
bodies in mouse PGC-like cells (derived from mouse embryonic stem
cells), as these structures are widely known to be involved in transla-
tional repression (Filipowicz, 2005; Liu et al., 2005). Using RNA immu-
noprecipitation and microarray a panel of Caspase mRNAs, namely
Caspase 2, 7 and 9, were identified as Dazl targets, and loss of Dazl ex-
pression released Caspase7 translational inhibition, thereby causing
PGCs to enter apoptosis (Chen et al., 2014). This may provide a mecha-
nism bywhich germ cells are lost by apoptosis in the Dazl−/− testis (Lin
and Page, 2005). Also co-immunoprecipitated with Dazl were mRNAs
important for the maintenance of pluripotency in embryonic stem
cells (Sox2 and Sall4) as well as mRNAs required for differentiation of
pluripotent cells (Suz12) (Chen et al., 2014), and these too were re-
pressed by Dazl.

The SOX family of transcription factors are involved in maintenance
of pluripotency, and in early human germ cells SOX17, rather than Sox2
in themouse, is present (de Jong et al., 2008; Perrett et al., 2008). In vitro
work from our own laboratory has identified SOX17 as another
pluripotency marker that is inhibited by DAZL in the human fetal
ovary (unpublished data). Endogenous SOX17 expression and SOX17-
3′UTR luciferase translation decreased following overexpression of
DAZL in HEK293 cells due to direct interaction between DAZL and the
3’UTR of SOX17. At 65 days gestation there was significant overlap be-
tween SOX17 and DAZL expression in germ cells in the human fetal
ovary, however at 14 weeks gestation, after meiosis has commenced,
n oogenesis: Balancing differentiation and self-renewal in the female
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SOX17 is predominantly found in less mature DAZL negative PGCs.
Therefore through translational regulation of these specific RNAs,
DAZL also limits both the pluripotency programme and somatic differ-
entiation in nascent PGCs.

Recent work within our own laboratory has made efforts to expand
the current knowledge regarding RNA targets of mammalian DAZL im-
portant for germ cell maturation. Thus far, attempts to identify DAZL
targets have been mainly focussed on mouse, and the majority of stud-
ies have used germ cells isolated from the testis (refer to (Rosario et al.,
2016a) for a review of RNA targets of DAZL). To analyse DAZL targets
during the onset and early stages of meiosis, we carried out RNA se-
quencing of transcripts immunoprecipitated with endogenous DAZL
from human fetal ovarian tissue. Our data confirm the meiotic role of
DAZL in the human fetal ovary, and also reveal novel potential functions
for DAZL through translation regulation of RNA targets involved in chro-
mosome cohesin establishment (SMC1B) and recombination and DNA
repair (HORMAD1, TRIP13, TEX11, RAD18, RAD51) (Rosario et al.,
2017). Although these functions were also identified by a gene expres-
sion analysis of the Dazl−/− mouse fetal ovary (Soh et al., 2015), we
have extended this by using a variety of translational techniques to con-
firm the dependency on DAZL for translation of three specific RNAs:
SYCP1, TEX11, and SMC1B. Therefore, we suggest DAZL has a key role
in regulating fundamental processes that are responsible for aiding dif-
ferentiating germ cells, through repression of pluripotency factors and
initiation of meiosis.

2.3. BOLL: bridging prophase and primordial follicle formation

BOLL is considered to be the common ancestor of the DAZ family
RBPs, yet despite this the physiological role of mammalian BOLL was
the last to be explored. BOLL is strongly conserved evolutionarily, with
orthologues in nearly all metazoans. Sequencing of the human BOLL
gene in 200 fertile and infertile men revealed few sequence variants
(Xu et al., 2003; Westerveld et al., 2005), in comparison to human
DAZL, which has common variants at approximately 1 in every 100
basepairs (Teng et al., 2002; Tung et al., 2006). Such a high level of se-
quence conservation in a reproductive gene would suggest that BOLL
has an essential germ cell role in animals.

In Drosophila males (Eberhart et al., 1996) and C. elegans females
(Karashima et al., 2000),mutations in boule lead tomeiotic arrest during
pachyteneof prophase I. HumanBOLL (BOULE-like) has also been impli-
cated in meiosis as it is able to restore meiotic function in Drosophila
boule mutants (Xu et al., 2003). Unexpectedly, targeted disruption of
Boll in mice revealed that Boll is not essential for the completion of mei-
osis, but is still required for the subsequent differentiation of round
spermatids into mature spermatozoa (VanGompel and Xu, 2010). Boll
null female mice showed no obvious defects and were fertile, therefore
it appears the requirement for BOLL is specific only to male germ cells,
much like the male-specific requirement of DAZ in humans
(VanGompel and Xu, 2010), although ectopic expression of BOLL in
human ES cells enhanced the differentiation of female cells into PGCs
(Kee et al., 2009).

Prior to our work investigating BOLL expression in the human and
mouse fetal ovary, the only report of BOLL protein in ovaries was in C.
elegans (Maruyama et al., 2005). We found BOLLmRNA to be absent in
first trimester fetal ovaries (which contain only premeiotic germ
cells), but readily detectable in early second trimester ovaries, consis-
tent with the entry of germ cells into meiosis at this time (He et al.,
2013b). This is consistent with data from the fetal sheep ovary, in
which DAZL transcript expression precedes that of BOLL by several
days (Mandon-Pepin et al., 2003). We found BOLL protein to be
expressed exclusively by oocytes in the human fetal ovary, and co-ex-
pression analysis revealed that a much greater proportion of BOLL-ex-
pressing cells also expressed meiosis markers (SYCP3 or
phosphoATM) than DAZL-expressing cells. This indicates that human
fetal oocytes switch from expressing DAZL to expressing BOLL early in
Please cite this article as: Rosario, R., et al., RNA-binding proteins in huma
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meiotic prophase. As oocyte differentiation progresses, BOLL is subse-
quently downregulated, and DAZL re-expressed, around the time of
germ cell nest break down and primordial follicle formation (Fig. 2)
(He et al., 2013b). It therefore seems that DAZL is required for the initi-
ation and early stages of germ cell differentiation and entry intomeiosis,
whilst BOLL may required for meiotic differentiation to be sustained
once underway. Whether downregulation of BOLL – and reactivation
of DAZL – is required for follicle formation remains to be established.

We also re-examined the expression of Boll in the fetalmouse ovary,
and detected a similar pulse of Boll expression at e15.5. However unlike
in humanswhere little overlap between BOLL and DAZL expressionwas
observed, in mice Boll expression occurred in germ cells that also
expressed Dazl, indicating that the two proteins are co-expressed in
germ cells in the fetal mouse germline (He et al., 2013b). This overlap-
ping expression raises the possibility of functional redundancy occur-
ring between the two proteins during oogenesis in the mouse, and is
likely to explain why Boll−/− female mice are fertile. Furthermore, the
absence of such co-expression (and thus lack of redundancy) in the
human fetal oocyte raises the possibility that BOLL may be novel locus
for human female (in)fertility, and suggests that some functional activ-
ities of DAZL and BOLL may have diverged between humans and mice.
Decreased BOLL expression has been reported in infertile men with
spermatogenic failure, however no mutations or polymorphisms were
identified in BOLL which could explain this, suggesting that the sper-
matogenic failure must arise from factors upstream of BOLL (Lin et al.,
2009; Luetjens et al., 2004). Whilst Cdc25 (Twine) has been identified
as a Boule target in Drosophila (Maines and Wasserman, 1999), almost
nothing is known about the mRNA targets of mammalian BOLL, but
the presence of conserved residues in the RNA-binding domains
(Jenkins et al., 2011), plus the ability of BOLL to rescue Dazl-deficient
phenotypes in flies and mouse (Xu et al., 2003; Vogel et al., 2002), sug-
gests some conservation of targets with DAZL.

2.4. FMRP: setting up the oocyte for later development?

An intriguing story is emerging regarding the role of another trans-
lational repressor RBP, Fragile X Mental Retardation Protein (FMRP),
in human oogenesis. Expansion of a CGG trinucleotide repeat in the
5’UTR of the FMR1 gene (encoding FMRP) beyond 200 repeats results
in fragile X syndrome, but around 20% of women with 55–200 repeats
(known as premutation alleles) display a condition known as fragile
X-associated premature ovarian insufficiency (FXPOI) (Sherman,
2000; Sherman et al., 2014; Mailick et al., 2014). To explore whether
this infertility defect has its origins in fetal oocyte development, we in-
vestigated the distribution of FMRP in the human fetal ovary.Whilst ini-
tially diffusely distributed throughout the cytoplasm in mitotic PGCs,
FMRP displays a striking redistribution into granular aggregates,
which occurs coincident with, or immediately prior to, the initiation of
meiosis (Fig. 3) (Rosario et al., 2016b). In neurons, FMRP is a component
of several different ribonucleotide particle (RNP)-containing granules
and within these granules, FMRP associates with its target mRNAs to
control their subsequent storage, translation or degradation (Siomi et
al., 1993; Hinds et al., 1993). Co-expression analyses with markers of
known granule types to revealed that FMRP-rich foci associated with
components of stress granules and P-bodies in the human fetal ovary
(Fig. 3) (Rosario et al., 2016b). However the localisation of FMRP gran-
ules to germ cell cytoplasm leads to the attractive hypothesis that
these structures are in fact, a class of germ cell granule, as these share
many components with stress granules and P-bodies, including
GW182 (Kotaja et al., 2006). Genetic evidence from severalmodels sup-
ports an essential role for germ cell granules during germ cell differen-
tiation: in the femalemouse germline P-body-like granules are found in
meiotically-immature oocytes (Aravin et al., 2009; Suzuki et al., 2007;
Flemr et al., 2010), and a loss of RNAs found in these granules causes
failure of primordial germ cell migration, reduced germ cell prolifera-
tion, pre-meiotic germ cell death, and meiotic defects (Kobayashi et
n oogenesis: Balancing differentiation and self-renewal in the female
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Fig. 3. FMRP co-expressionwith variousmarkers of germ cell development and RNA granules. There is limited overlap between FMRP and LIN28. Expression of themeiosis marker SYCP3
correlateswith FMRP granulation (white arrowheads) inmost but all of germ cells, suggesting that FMRP granulation precedes SYCP3 expression. There is a degree of association between
FMRP and RNA granule markers GW182 and G3BP, respectively.
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al., 1996; Subramaniam and Seydoux, 1999; Koprunner et al., 2001;
Carmell et al., 2007; Deng and Lin, 2002; Tanaka et al., 2000). However,
themolecularmechanisms that underlie germ cell granule involvement
in these phenotypes are unclear andmammalian germ cell granules re-
main poorly understood. Nevertheless, the appearance of these gran-
ules at the onset of meiosis in the human fetal ovary raises the
possibility that FMRP is repressingmRNAswhose translationmust be si-
lenced to allow the mitosis-meiosis transition.

Mousemodels engineered to carry Fmr1 pre-mutation alleles (Hinds
et al., 1993; Hoffman et al., 2012), show normal numbers of primordial
follicles, suggesting that the initial stages of meiotic prophase and
follicle formation are not perturbed by the presence of these alleles.
Whether this is due to an intrinsic abnormality within the oocytes or
pre-granulosa cells of primordial follicles, or in the pathways that
control follicle activation is unclear, as is its possible relevance to
human primordial follicle formation and oocyte development
(Alvarez-Mora et al., 2015). Several RNA targets of FMRP have been
identified in human brain, and work in the Fmr1 null mouse, which
exhibits precocious follicular activation, has demonstrated
dysregulation of these targets in Fmr1−/− ovaries, indicating that
FMRP targets share signalling pathways across different cellular
contexts (Ascano et al., 2012). Therefore it will be interesting to
establish whether FMRP granule assembly is disrupted in FXPOI
patients, and whether this has later impacts later oocyte/follicle
development in these individuals, thus contributing to their subfertility.

3. Conclusions

Whilst it is clear that RNA-binding proteins play crucial roles in reg-
ulating oogenesis, understanding the functions of these proteins relies
on identifying the RNA targets they bind and regulate. Given the relative
promiscuity of RNA-binding proteins, it seems likely that the fertility
phenotypes seen in their absence may not be attributable to dysregula-
tion of a single mRNA target, but the combination of a failure to appro-
priately translate or process many transcripts. In addition to RNA-
binding proteins, long non-coding RNAs (lncRNAs) have emerged as
key regulators of pluripotency, differentiation, gene expression and
chromatin structure and remodelling in mammalian cells, and can act
as molecular sponges, to ‘soak up’ and inhibit the activity of miRNAs
(Rosa and Ballarino, 2016). Each of these processes are critical to game-
togenesis, yet we know little of the expression and/or function of such
transcripts in the developing mammalian germline (Taylor et al.,
2015). Finally, the recent identification of Pumilio 1 as a somatic cell-
expressed RNA-binding regulator of oogenesis and follicle formation
(Mak et al., 2016), underlines the need to broaden studies of the
Please cite this article as: Rosario, R., et al., RNA-binding proteins in huma
fetal germline, Stem Cell Res. (2017), http://dx.doi.org/10.1016/j.scr.2017
role(s) of RBPs in gametogenesis beyond the germ cell compartment
alone. Single cell RNA sequencing studies, coupled with the develop-
ment of newmouse models that enable stage-specific conditional dele-
tion of RNA-binding proteins or that recapitulate infertility-associated
polymorphisms in humans, will illuminate these issues.
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