10 research outputs found

    Whole-genome sequencing for routine pathogen surveillance in public health : A population snapshot of invasive Staphylococcus aureus in Europe

    Get PDF
    Funding Information: This work, including the efforts of Matthew Holden, Janina Dordel, Julian Parkhill, and Stephen Bentley, was funded by Wellcome Trust (098051). This work, including the efforts of David M. Aanensen, Corin Yeats, and Artemij Fedosejev, was funded by Wellcome Trust (099202). This work, including the efforts of Brian Spratt, was funded by Wellcome Trust (089472). This work, including the efforts of Santiago Castillo-Ram?rez, was funded by Medical Research Council (MRC) (G1000803). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Publisher Copyright: © 2016 Aanensen et al.The implementation of routine whole-genome sequencing (WGS) promises to transform our ability to monitor the emergence and spread of bacterial pathogens. Here we combined WGS data from 308 invasive Staphylococcus aureus isolates corresponding to a pan-European population snapshot, with epidemiological and resistance data. Geospatial visualization of the data is made possible by a generic software tool designed for public health purposes that is available at the project URL (http:// www.microreact.org/project/EkUvg9uY?tt=rc). Our analysis demonstrates that high-risk clones can be identified on the basis of population level properties such as clonal relatedness, abundance, and spatial structuring and by inferring virulence and resistance properties on the basis of gene content. We also show that in silico predictions of antibiotic resistance profiles are at least as reliable as phenotypic testing. We argue that this work provides a comprehensive road map illustrating the three vital components for future molecular epidemiological surveillance: (i) large-scale structured surveys, (ii) WGS, and (iii) communityoriented database infrastructure and analysis tools. IMPORTANCE The spread of antibiotic-resistant bacteria is a public health emergency of global concern, threatening medical intervention at every level of health care delivery. Several recent studies have demonstrated the promise of routine wholegenome sequencing (WGS) of bacterial pathogens for epidemiological surveillance, outbreak detection, and infection control. However, as this technology becomes more widely adopted, the key challenges of generating representative national and international data sets and the development of bioinformatic tools to manage and interpret the data become increasingly pertinent. This study provides a road map for the integration of WGS data into routine pathogen surveillance. We emphasize the importance of large-scale routine surveys to provide the population context for more targeted or localized investigation and the development of open-access bioinformatic tools to provide the means to combine and compare independently generated data with publicly available data sets.publishersversionPeer reviewe

    Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread

    Get PDF
    EuSCAPE Working Group: Portugal - Manuela Caniça, Vera ManageiroPublic health interventions to control the current epidemic of carbapenem-resistant Klebsiella pneumoniae rely on a comprehensive understanding of its emergence and spread over a wide range of geographical scales. We analysed the genome sequences and epidemiological data of >1,700 K. pneumoniae samples isolated from patients in 244 hospitals in 32 countries during the European Survey of Carbapenemase-Producing Enterobacteriaceae. We demonstrate that carbapenemase acquisition is the main cause of carbapenem resistance and that it occurred across diverse phylogenetic backgrounds. However, 477 of 682 (69.9%) carbapenemase-positive isolates are concentrated in four clonal lineages, sequence types 11, 15, 101, 258/512 and their derivatives. Combined analysis of the genetic and geographic distances between isolates with different β-lactam resistance determinants suggests that the propensity of K. pneumoniae to spread in hospital environments correlates with the degree of resistance and that carbapenemase-positive isolates have the highest transmissibility. Indeed, we found that over half of the hospitals that contributed carbapenemase-positive isolates probably experienced within-hospital transmission, and interhospital spread is far more frequent within, rather than between, countries. Finally, we propose a value of 21 for the number of single nucleotide polymorphisms that optimizes the discrimination of hospital clusters and detail the international spread of the successful epidemic lineage, ST258/512.This work was funded by The Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Wellcome (grant nos. 098051 and 099202) and the NIHR Global Health Research Unit on Genomic Surveillance of Antimicrobial Resistance (NIHR 16/136/111). The EuSCAPE project was funded by ECDC through a specific framework contract (ECDC/2012/055) following an open call for tender (OJ/25/04/2012-PROC/2012/036).info:eu-repo/semantics/publishedVersio

    Good performance of the spectracellRA system for typing of methicillin-resistant staphylococcus aureus isolates

    No full text
    Typing of methicillin-resistant Staphylococcus aureus (MRSA) remains necessary in order to assess whether transmission of MRSA occurred and to what extent infection prevention measures need to be taken. Raman spectroscopy (SpectraCellRA [SCRA]; RiverD International, Rotterdam, The Netherlands) is a recently developed tool for bacterial typing. In this study, the performance (typeability, discriminatory power, reproducibility, workflow, and costs) of the SCRA system was evaluated for typing of MRSA strains isolated from patients and patients' household members who were infected with or colonized by MRSA. We analyzed a well-documented collection of 113 MRSA strains collected from 54 households. The epidemiological relationship between the MRSA strains within one household was used as the gold standard. Pulsed-field gel electrophoresis (PFGE) was used for discrepancy analysis. The results of SCRA analysis on the strain level corresponded with epidemiological data for 108 of 113 strains, a concordance of 95.6%. When analyzed at the household level, the results of SCRA were correct for 49 out of 54 households, a concordance of 90.7%. Concordance on the strain level with epidemiological data for PFGE was 93.6% (103/110 isolates typed). Concordance on the household level with epidemiological data for PFGE was 93.5% (49/53 households analyzed). With PFGE regarded as the reference standard, the conclusions reached with Raman spectroscopy were identical to those reached with PFGE in 100 of 105 cases (95.2%). The reproducibility of SCRA was found to be 100%. We conclude that the SpectraCellRA system is a fast, easy-to-use, and highly reproducible typing platform for outbreak analysis that can compete with the currently used typing techniques. Copyrigh
    corecore