317 research outputs found

    Age-related human small intestine methylation: evidence for stem cell niches

    Get PDF
    BACKGROUND: The small intestine is constructed of many crypts and villi, and mouse studies suggest that each crypt contains multiple stem cells. Very little is known about human small intestines because mouse fate mapping strategies are impractical in humans. However, it is theoretically possible that stem cell histories are inherently written within their genomes. Genomes appear to record histories (as exemplified by use of molecular clocks), and therefore it may be possible to reconstruct somatic cell dynamics from somatic cell errors. Recent human colon studies suggest that random somatic epigenetic errors record stem cell histories (ancestry and total numbers of divisions). Potentially age-related methylation also occurs in human small intestines, which would allow characterization of their stem cells and comparisons with the colon. METHODS: Methylation patterns in individual crypts from 13 small intestines (17 to 78 years old) were measured by bisulfite sequencing. The methylation patterns were analyzed by a quantitative model to distinguish between immortal or niche stem cell lineages. RESULTS: Age-related methylation was observed in the human small intestines. Crypt methylation patterns were more consistent with stem cell niches than immortal stem cell lineages. Human large and small intestine crypt niches appeared to have similar stem cell dynamics, but relatively less methylation accumulated with age in the small intestines. There were no apparent stem cell differences between the duodenum and ileum, and stem cell survival did not appear to decline with aging. CONCLUSION: Crypt niches containing multiple stem cells appear to maintain human small intestines. Crypt niches appear similar in the colon and small intestine, and the small intestinal stem cell mitotic rate is the same as or perhaps slower than that of the colon. Although further studies are needed, age-related methylation appears to record somatic cell histories, and a somatic epigenetic molecular clock strategy may potentially be applied to other human tissues to reconstruct otherwise occult stem cell histories

    Paneth cells as a site of origin for intestinal inflammation.

    Get PDF
    The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn's disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(ΔIEC)) or autophagy function (Atg16l1(ΔIEC) or Atg7(ΔIEC)) in intestinal epithelial cells results in each other's compensatory engagement, and severe spontaneous Crohn's-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(ΔIEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2α (eIF2α) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1α (IRE1α)-regulated NF-κB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1α activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-κB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn's disease as a specific disorder of Paneth cells

    Lkb1 Deficiency Alters Goblet and Paneth Cell Differentiation in the Small Intestine

    Get PDF
    The Lkb1 tumour suppressor is a multitasking kinase participating in a range of physiological processes. We have determined the impact of Lkb1 deficiency on intestinal homeostasis, particularly focussing on secretory cell differentiation and development since we observe strong expression of Lkb1 in normal small intestine Paneth and goblet cells. We crossed mice bearing an Lkb1 allele flanked with LoxP sites with those carrying a Cyp1a1-specific inducible Cre recombinase. Lkb1 was efficiently deleted from the epithelial cells of the mouse intestine after intraperitoneal injection of the inducing agent β-naphthoflavone. Bi-allelic loss of Lkb1 led to the perturbed development of Paneth and goblet cell lineages. These changes were characterised by the lack of Delta ligand expression in Lkb1-deficient secretory cells and a significant increase in the levels of the downstream Notch signalling effector Hes5 but not Hes1. Our data show that Lkb1 is required for the normal differentiation of secretory cell lineages within the intestine, and that Lkb1 deficiency modulates Notch signalling modulation in post-mitotic cells

    Paneth Cells in Intestinal Homeostasis and Tissue Injury

    Get PDF
    Adult stem cell niches are often co-inhabited by cycling and quiescent stem cells. In the intestine, lineage tracing has identified Lgr5+ cells as frequently cycling stem cells, whereas Bmi1+, mTert+, Hopx+ and Lrig1+ cells appear to be more quiescent. Here, we have applied a non-mutagenic and cell cycle independent approach to isolate and characterize small intestinal label-retaining cells (LRCs) persisting in the lower third of the crypt of Lieberkühn for up to 100 days. LRCs do not express markers of proliferation and of enterocyte, goblet or enteroendocrine differentiation, but are positive for Paneth cell markers. While during homeostasis, LR/Paneth cells appear to play a supportive role for Lgr5+ stem cells as previously shown, upon tissue injury they switch to a proliferating state and in the process activate Bmi1 expression while silencing Paneth-specific genes. Hence, they are likely to contribute to the regenerative process following tissue insults such as chronic inflammation

    Barriers for user acceptance of Mobile Health applications for Diabetic patients: Applying the UTAUT model

    Get PDF
    The literature illustrates that technology will widen health disparity if its use is restricted to patients who are already motivated and demonstrate good self-management behaviours. Additionally, despite the availability of free mobile health (m-health) applications for diabetes self-management, usage is low. There are also limited studies of m-health acceptance in South Africa. This research is delineated to the Western Cape, South Africa. The populace suffers from increasing numbers of diabetic patients. Segments of the population also suffer from technological forms of exclusion, such as limited internet access. Therefore, the objective of this study was to identify challenges for user acceptance that discourages the use of m-health applications. This study analysed 130 semi-structured interviews, using thematic content analysi

    Spinal Astrocytic Activation Is Involved in a Virally-Induced Rat Model of Neuropathic Pain

    Get PDF
    Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2 weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-α-aminoadipate (astrocytic specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal activated astrocytes may be one of the most important factors in the pathophysiology of PHN and “NO-Astrocyte-Cytokine-NMDAR-Neuron” pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for clinical management of PHN

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    A Mouse Stromal Response to Tumor Invasion Predicts Prostate and Breast Cancer Patient Survival

    Get PDF
    Primary and metastatic tumor growth induces host tissue responses that are believed to support tumor progression. Understanding the molecular changes within the tumor microenvironment during tumor progression may therefore be relevant not only for discovering potential therapeutic targets, but also for identifying putative molecular signatures that may improve tumor classification and predict clinical outcome. To selectively address stromal gene expression changes during cancer progression, we performed cDNA microarray analysis of laser-microdissected stromal cells derived from prostate intraepithelial neoplasia (PIN) and invasive cancer in a multistage model of prostate carcinogenesis. Human orthologs of genes identified in the stromal reaction to tumor progression in this mouse model were observed to be expressed in several human cancers, and to cluster prostate and breast cancer patients into groups with statistically different clinical outcomes. Univariate Cox analysis showed that overexpression of these genes is associated with shorter survival and recurrence-free periods. Taken together, our observations provide evidence that the expression signature of the stromal response to tumor invasion in a mouse tumor model can be used to probe human cancer, and to provide a powerful prognostic indicator for some of the most frequent human malignancies

    Paneth cell - rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche

    Get PDF
    The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission

    Preferential Entry of Botulinum Neurotoxin A Hc Domain through Intestinal Crypt Cells and Targeting to Cholinergic Neurons of the Mouse Intestine

    Get PDF
    Botulism, characterized by flaccid paralysis, commonly results from botulinum neurotoxin (BoNT) absorption across the epithelial barrier from the digestive tract and then dissemination through the blood circulation to target autonomic and motor nerve terminals. The trafficking pathway of BoNT/A passage through the intestinal barrier is not yet fully understood. We report that intralumenal administration of purified BoNT/A into mouse ileum segment impaired spontaneous muscle contractions and abolished the smooth muscle contractions evoked by electric field stimulation. Entry of BoNT/A into the mouse upper small intestine was monitored with fluorescent HcA (half C-terminal domain of heavy chain) which interacts with cell surface receptor(s). We show that HcA preferentially recognizes a subset of neuroendocrine intestinal crypt cells, which probably represent the entry site of the toxin through the intestinal barrier, then targets specific neurons in the submucosa and later (90–120 min) in the musculosa. HcA mainly binds to certain cholinergic neurons of both submucosal and myenteric plexuses, but also recognizes, although to a lower extent, other neuronal cells including glutamatergic and serotoninergic neurons in the submucosa. Intestinal cholinergic neuron targeting by HcA could account for the inhibition of intestinal peristaltism and secretion observed in botulism, but the consequences of the targeting to non-cholinergic neurons remains to be determined
    corecore