13 research outputs found

    The peroxisome and the eye

    Full text link
    Several childhood multisystem disorders with prominent ophthalmological manifestations have been ascribed to the malfunction of the peroxisome, a subcellular organelle. The peroxisomal disorders have been divided into three groups: 1) those that result from defective biogenesis of the peroxisome (Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum's disease); 2) those that result from multiple enzyme deficiencies (rhizomelic chondrodysplasia punctata); and 3) those that result from a single enzyme deficiency (X-linked adrenoleukodystrophy, primary hyperoxaluria type 1). Zellweger syndrome, the most lethal of the three peroxisomal biogenesis disorders, causes infantile hypotonia, seizures, and death within the first year. Ophthalmic manifestations include corneal opacification, cataract, glaucoma, pigmentary retinopathy and optic atrophy. Neonatal adrenoleukodystrophy and infantile Refsum's disease appear to be genetically distinct, but clinically, biochemically, and pathologically similar to Zellweger syndrome, although milder. Rhizomelic chondrodysplasia punctata, a peroxisomal disorder which results from at least two peroxisomal enzyme deficiencies, presents at birth with skeletal abnormalities and patients rarely survive past one year of age. The most prominent ocular manifestation consists of bilateral cataracts. X-linked (childhood) adrenoleukodystrophy, results from a deficiency of a single peroxisomal enzyme, presents in the latter part of the first decade with behavioral, cognitive and visual deterioration. The vision loss results from demyelination of the entire visual pathway, but the outer retina is spared. Primary hyperoxaluria type 1 manifests parafoveal subretinal pigment proliferation. Classical Refsum's disease may also be a peroxisomal disorder, but definitive evidence is lacking. Early identification of these disorders, which may depend on recognizing the ophthalmological findings, is critical for prenatal diagnosis, treatment, and genetic counselling.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29438/1/0000520.pd

    Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi?

    No full text
    Carbon sink strength differences are examined here between ectomycorrhizal fungi in interaction with additions of ammonium and apatite (a phosphorus- and calcium-containing mineral). Pinus muricata associated with Paxillus involutus and four suilloid isolates (Suillus pungens and members of three Rhizopogon section Amylopogon species groups) were used in microcosm nutrient addition experiments. The associations differed in ectomycorrhizal biomass, mycelial growth rate, biomass and respiration. P. involutus produced the lowest biomass of ectomycorrhizal connections to P. muricata, but it consumed proportionally more carbon per connection and transferred more than twice as much ammonium to the host per unit mycorrhizal biomass. Paxillus also colonized the soil more rapidly and intensely than the other fungi, but its mycelial respiration was lowest. Ammonium and apatite addition resulted in a marked increase in respiration and mycelial biomass, respectively, by the suilloid fungi. The high carbon cost of ammonium uptake is suggested as one explanation for reduced sporocarp production and mycelial growth by ectomycorrhizal fungi commonly found after high levels of nitrogen addition

    Batf3 maintains autoactivation of Irf8 for commitment of a CD8alpha(+) conventional DC clonogenic progenitor

    No full text
    The transcription factors Batf3 and IRF8 are required for the development of CD8alpha(+) conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8alpha(+) cDCs and CD4(+) cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8alpha(+) cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8alpha(+) cDC-specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3(-/-) mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8alpha(+) cDCs due to decay of Irf8 autoactivation and diverted to the CD4(+) cDC lineage
    corecore