29 research outputs found

    Unraveling the Infrared Transient VVV-WIT-06: The Case for the Origin as a Classical Nova

    Get PDF
    Indexación: Scopus.E.Y.H. acknowledges the support provided by the National Science Foundation under Grant No. AST-1613472 and by the Florida Space Grant Consortium. L.G. acknowledges support from the FINCA visitor programme. The research work at the Physical Research Laboratory is funded by the Department of Space, Government of India. Facility: Magellan: Baade(FIRE).The enigmatic near-infrared transient VVV-WIT-06 underwent a large-amplitude eruption of unclear origin in 2013 July. Based on its light curve properties and late-time post-outburst spectra, various possibilities have been proposed in the literature for the origin of the object, namely a Type I supernova, a classical nova (CN), or a violent stellar merger event. We show that, of these possibilities, an origin in a CN outburst convincingly explains the observed properties of VVV-WIT-06. We estimate that the absolute K-band magnitude of the nova at maximum was M k = -8.2 ±0.5, its distance d = 13.35 ±2.18 kpc, and the extinction A v = 15.0 ±0.55 mag. © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-4357/aae5d

    JWST MIRI/Medium Resolution Spectrograph (MRS) observations and spectral models of the underluminous yype Ia supernova 2022xkq

    Get PDF
    We present a JWST mid-infrared (MIR) spectrum of the underluminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) ∼130 days post-explosion. We identify the first MIR lines beyond 14 μm in SN Ia observations. We find features unique to underluminous SNe Ia, including the following: isolated emission of stable Ni, strong blends of [Ti ii], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Co iii] 11.888 μm feature and the SN light-curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements, we constrain the mass of the exploding WD. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD (MWD ≈1.37 M⊙) of high central density (ρc ≥ 2.0 × 109 g cm−3) seen equator-on, which produced M(56Ni) =0.324 M⊙ and M(58Ni) ≥0.06 M⊙. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of subsonic carbon burning followed by an off-center deflagration-to-detonation transition beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previousl

    A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features

    Get PDF
    Context. Super-luminous supernovae (SLSNe) are rare events defined as being significantly more luminous than normal terminal stellar explosions. The source of the additional power needed to achieve such luminosities is still unclear. Discoveries in the local Universe (i.e. z < 0.1) are scarce, but afford dense multi-wavelength observations. Additional low-redshift objects are therefore extremely valuable. Aims. We present early-time observations of the type I SLSN ASASSN-18km/SN 2018bsz. These data are used to characterise the event and compare to literature SLSNe and spectral models. Host galaxy properties are also analysed. Methods. Optical and near-IR photometry and spectroscopy were analysed. Early-time ATLAS photometry was used to constrain the rising light curve. We identified a number of spectral features in optical-wavelength spectra and track their time evolution. Finally, we used archival host galaxy photometry together with H II region spectra to constrain the host environment. Results. ASASSN-18km/SN 2018bsz is found to be a type I SLSN in a galaxy at a redshift of 0.0267 (111 Mpc), making it the lowest-redshift event discovered to date. Strong C II lines are identified in the spectra. Spectral models produced by exploding a Wolf-Rayet progenitor and injecting a magnetar power source are shown to be qualitatively similar to ASASSN-18km/SN 2018bsz, contrary to most SLSNe-I that display weak or non-existent C II lines. ASASSN-18km/SN 2018bsz displays a long, slowly rising, red “plateau” of >26 days, before a steeper, faster rise to maximum. The host has an absolute magnitude of –19.8 mag (r), a mass of M⋆ = 1.5−0.33+0.08 × 109 M⊙, and a star formation rate of = 0.50−0.19+2.22 M⊙ yr −1. A nearby H II region has an oxygen abundance (O3N2) of 8.31 ± 0.01 dex

    Tactile teacher: Sensing finger tapping in piano playing

    No full text
    10.1145/2677199.2680554TEI 2015 - Proceedings of the 9th International Conference on Tangible, Embedded, and Embodied Interaction257-26

    Surface Ice and Tholins on the Extreme Centaur 2012 DR30

    No full text
    2012 DR is one of the known solar system objects with the largest aphelion distance, exceeding 2200 au, on a high inclination orbit (i =78). It has been recognized to be either a borderline representative of high inclination, high perihelion distance (HiHq) objects, or even a new class of bodies, similar to HiHq objects for orbit but with an aphelion in the inner Oort Cloud. Here, we present photometry using long-term data from 2000 to 2013 taken by the SDSS sky survey, ESO MPG 2.2 m and McDonald 2.1 m telescopes, and a visual+near-infrared spectrum taken with the Southern Astrophysical Research Telescope and Magellan telescopes, providing insights into the surface composition of this body. Our best fit suggests that the surface contains 60% of complex organics (30% of Titan and 30% of Triton tholins) with a significant fraction of ice (30%, including pure water and water with inclusions of complex organics) and 10% silicates. The models also suggest a low limit of amorphous carbons, and hence the fragmentation of long-chained complex organics is slower than their rate of generation. 2012 DR30 just recently passed the perihelion, and the long-term photometry of the object suggested ambiguous signs of activity, since the long-term photometric scatter well exceeded the supposed measurement errors and the expected brightness variation related to rotation. Photometric colors put 2012 DR30 exactly between dark neutral and red objects, thus it either can be in a transition phase between the two classes or have differing surface properties from these populated classes.© 2018. The American Astronomical Society. All rights reserved.The research leading to these results have been supported by the the Hungarian National Research, Development and Innovation Office (NKFIH) grants K-115709, K-119517, K-125015, PD-116175, and the GINOP-2.3.2-15-2016-00003, the European Unions Horizon 2020 Research and Innovation Program, under Grant Agreement No. 687378 (Small Bodies: Near and Far) and the Lendiflet LP2012-31 and LP2014-17 grants of the Hungarian Academy of Sciences, and by the City of Szombathely under agreement No. S-11-1027. L.M. was supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences. E.Y.H. acknowledges the support provided by the National Science Foundation under grant Nos. AST-1008343 and AST-1613472. E.H. and G.H.M. acknowledge the excellent support provided by the staff of the Las Campanas Observatory during the FIRE observations. J.G.R. and J.V. are grateful for the granted telescope time on the 2.1 m Otto Struve telescope at McDonald Observatory. R.D. acknowledges the support of MINECO for his Ramon y Cajal Contract. A.A.C. acknowledges support from the Marie Curie Actions of the European Commission (FP7-COFUND), FAPERJ, and CNPq

    Supernova spectra below strong circumstellar interaction

    No full text
    We construct spectra of supernovae (SNe) interacting strongly with a circumstellar medium (CSM) by adding SN templates, a blackbody continuum, and an emission-line spectrum. In a Monte Carlo simulation we vary a large number of parameters, such as the SN type, brightness and phase, the strength of the CSM interaction, the extinction, and the signal to noise ratio (S/N) of the observed spectrum. We generate more than 800 spectra, distribute them to ten different human classifiers, and study how the different simulation parameters affect the appearance of the spectra and their classification. The SNe IIn showing some structure over the continuum were characterized as “SNe IInS” to allow for a better quantification. We demonstrate that the flux ratio of the underlying SN to the continuum fV is the single most important parameter determining whether a spectrum can be classified correctly. Other parameters, such as extinction, S/N, and the width and strength of the emission lines, do not play a significant role. Thermonuclear SNe get progressively classified as Ia-CSM, IInS, and IIn as fV decreases. The transition between Ia-CSM and IInS occurs at fV ∼ 0.2−0.3. It is therefore possible to determine that SNe Ia-CSM are found at the (un-extincted) magnitude range −19.5 > M > −21.6, in very good agreement with observations, and that the faintest SN IIn that can hide a SN Ia has M = −20.1. The literature sample of SNe Ia-CSM shows an association with 91T-like SNe Ia. Our experiment does not support that this association can be attributed to a luminosity bias (91T-like being brighter than normal events). We therefore conclude that this association has real physical origins and we propose that 91T-like explosions result from single degenerate progenitors that are responsible for the CSM. Despite the spectroscopic similarities between SNe Ibc and SNe Ia, the number of misclassifications between these types was very small in our simulation and mostly at low S/N. Combined with the SN luminosity function needed to reproduce the observed SN Ia-CSM luminosities, it is unlikely that SNe Ibc constitute an important contaminant within this sample. We show how Type II spectra transition to IIn and how the Hα profiles vary with fV . SNe IIn fainter than M = −17.2 are unable to mask SNe IIP brighter than M = −15. A more advanced simulation, including radiative transfer, shows that our simplified model is a good first order approximation. The spectra obtained are in good agreement with real data

    A Bright Ultraviolet Excess in the Transitional 02es-like Type Ia Supernova 2019yvq

    No full text
    We present photometric and spectroscopic observations of the nearby Type Ia SN 2019yvq, from its discovery ∼1 day after explosion to ∼100 days after its peak brightness. This SN exhibits several unusual features, most notably an extremely bright UV excess seen within ∼5 days of its explosion. As seen in Swift UV data, this early excess outshines its "peak"brightness, making this object more extreme than other supernovae (SNe) with early UV/blue excesses (e.g., iPTF14atg and SN 2017cbv). In addition, it was underluminous M B = -18.4, relatively quickly declining (Δm 15(B) = 1.37), and shows red colors past its early blue bump. Unusual (although not unprecedented) spectral features include extremely broad-lined and high-velocity Si absorption. Despite obvious differences in peak spectra, we classify SN 2019yvq as a transitional member of the 02es-like subclass due to its similarities in several respects (e.g., color, peak luminosity, peak Ti, and nebular [Ca ii]). We model this data set with a variety of published models, including SN ejecta-companion shock interaction and sub-Chandrasekhar-mass white dwarf (WD) double-detonation models. Radio constraints from the VLA place an upper limit of (4.5-20) 10-8 M o˙ yr-1 on the mass-loss rate from a symbiotic progenitor, which does not exclude a red giant or main-sequence companion. Ultimately, we find that no one model can accurately replicate all aspects of the data set, and further we find that the ubiquity of early excesses in 02es-like SNe Ia requires a progenitor system that is capable of producing isotropic UV flux, ruling out some models for this class of objects. © 2021. The American Astronomical Society. All rights reserved..Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Gaia16apd - A link between fast and slowly declining type I superluminous supernovae

    No full text
    We present ultraviolet (UV), optical and infrared photometry and optical spectroscopy of the type Ic superluminous supernova (SLSN) Gaia16apd (=SN 2016eay), covering its evolution from 26 d before the g-band peak to 234.1 d after the peak. Gaia16apd was followed as a part of the NOT Unbiased Transient Survey (NUTS). It is one of the closest SLSNe known (z = 0.102 ± 0.001), with detailed optical and UV observations covering the peak. Gaia16apd is a spectroscopically typical type Ic SLSN, exhibiting the characteristic blue early spectra with O II absorption, and reaches a peak Mg = -21.8 ± 0.1 mag. However, photometrically it exhibits an evolution intermediate between the fast and slowly declining type Ic SLSNe, with an early evolution closer to the fast-declining events. Together with LSQ12dlf, another SLSN with similar properties, it demonstrates a possible continuum between fast and slowly declining events. It is unusually UV-bright even for an SLSN, reaching a non-K-corrected Muvm2 ? -23.3 mag, the only other type Ic SLSN with similar UV brightness being SN 2010gx. Assuming that Gaia16apd was powered by magnetar spin-down, we derive a period of P = 1.9 ± 0.2 ms and a magnetic field of B = 1.9 ± 0.2 × 1014 G for the magnetar. The estimated ejecta mass is between 8 and 16 M?, and the kinetic energy between 1.3 and 2.5 × 1052 erg, depending on opacity and assuming that the entire ejecta is swept up into a thin shell. Despite the early photometric differences, the spectra at late times are similar to slowly declining type Ic SLSNe, implying that the two subclasses originate from similar progenitors. © 2017 The Authors.Villum Fonden Federación Española de Enfermedades Raras, FEDER: ESP2016-80079-C2-1-R, MDM-2014-0369, ESP2014-55996-C2-1-R AST-1008343, PRIN 2010-2011, AST-1613472 National Science Foundation, NSF: 1545949 Suomen Kulttuurirahasto 1994 PRIN-INAF 2014 Instituto de Ciencias del Cosmos, Universitat de Barcelona, ICCUB Ministry of Economy Infocomm Development Authority of Singapore, IDA: Danish Astronomy Emil Aaltosen Säätiö International Parkinson and Movement Disorder Society, MDS National Centre for Atmospheric Science, NCAS: OPUS 2015/17/B/ST9/03167 Københavns Universitet, KU Ministerio de Economía y Competitividad, MINECOWe thank the anonymous referee for comments that helped improve this paper considerably. We thank Subo Dong, Cosimo Inserra, Christa Gall, Peter Brown and Andrea Pastorello for their suggestions. We acknowledge ESA Gaia, DPAC and the Photometric Science Alerts Team (http://gsaweb.ast.cam.ac.uk/alerts). The pt5m and TJO preliminary photometric calibrations were obtained using the Cambridge Photometric Calibration Server (CPCS), designed and maintained by Sergey Koposov and Lukasz Wyrzykowski. Based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association, and with the Gran Telescopio Canarias (GTC), at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. The data presented here were obtained in part with ALFOSC,which is provided by the Instituto deAstrofisica de Andalucia (IAA) under a joint agreement with the University of Copenhagen and NOTSA. We also thank support astronomers working in Telescopi Joan Or? at Montsec Observatory (OAdM) for their help to run the needed sequences on time for our Gaia alert programme. TK acknowledges financial support by the Emil Aaltonen Foundation. NB was supported by the GROWTH project funded by the National Science Foundation under Grant No. 1545949. JH acknowledges support by the Finnish Cultural Foundation. MF acknowledges the support of a Royal Society-Science Foundation Ireland University Research Fellowship. NER acknowledges financial support by the 1994 PRIN-INAF 2014 (project 'Transient Universe: unveiling new types of stellar explosions with PESSTO') and by MIUR PRIN 2010-2011, 'The darkUniverse and the cosmic evolution of baryons: from current surveys to Euclid'. EYH acknowledges the support provided by the National Science Foundation under Grant No. AST-1008343 and AST-1613472. MDS is funded by generous support provided by the DanishAgency for Science and Technology and Innovation realized through a Sapere Aude Level 2 grant and a grant from the Villum Foundation. This work was supported by the MINECO (Spanish Ministry of Economy)-FEDER through grants ESP2016-80079-C2-1-R and ESP2014-55996-C2-1-R and MDM-2014-0369 of ICCUB (Unidad de Excelencia 'Mar?a de Maeztu'). NUTS is funded in part by the IDA (Instrument Centre for Danish Astronomy). LW was supported by Polish National Science Centre Grant No. OPUS 2015/17/B/ST9/03167. -
    corecore