329 research outputs found

    Rapid Assessment of Vietnam\u27s Labor Inspection System

    Get PDF
    [Excerpt] In July 2010, a team from the U.S. Department of Labor (USDOL) visited Vietnam to conduct an assessment of the Ministry of Labor, War Invalids & Social Affairs’ (MOLISA) labor inspection system. This effort was requested by the SIIR project (funded by USAID) as part of its aim of identifying MOLISA’s needs and providing assistance, per MOLISA’s request. The Assessment focuses on: 1) assessing facts related to the labor inspection system; and 2) providing initial recommendations for improving the system. Part I discusses MOLISA’s history, legal and regulatory framework, structure and organization, Department of Labor Inspections (including workforce, forms and data collection, and IPZ). Part II discusses issues and presents recommendations related to data collection, labor inspector training, inspectorate staffing levels, educational outreach, research and networking, systems of continuous improvement, and coordination with international and private buyers

    Evaluating the spatial transferability and temporal repeatability of remote sensing-based lake water quality retrieval algorithms at the European scale:a meta-analysis approach

    Get PDF
    Many studies have shown the considerable potential for the application of remote-sensing-based methods for deriving estimates of lake water quality. However, the reliable application of these methods across time and space is complicated by the diversity of lake types, sensor configuration, and the multitude of different algorithms proposed. This study tested one operational and 46 empirical algorithms sourced from the peer-reviewed literature that have individually shown potential for estimating lake water quality properties in the form of chlorophyll-a (algal biomass) and Secchi disc depth (SDD) (water transparency) in independent studies. Nearly half (19) of the algorithms were unsuitable for use with the remote-sensing data available for this study. The remaining 28 were assessed using the Terra/Aqua satellite archive to identify the best performing algorithms in terms of accuracy and transferability within the period 2001–2004 in four test lakes, namely VĂ€nern, VĂ€ttern, Geneva, and Balaton. These lakes represent the broad continuum of large European lake types, varying in terms of eco-region (latitude/longitude and altitude), morphology, mixing regime, and trophic status. All algorithms were tested for each lake separately and combined to assess the degree of their applicability in ecologically different sites. None of the algorithms assessed in this study exhibited promise when all four lakes were combined into a single data set and most algorithms performed poorly even for specific lake types. A chlorophyll-a retrieval algorithm originally developed for eutrophic lakes showed the most promising results (R2 = 0.59) in oligotrophic lakes. Two SDD retrieval algorithms, one originally developed for turbid lakes and the other for lakes with various characteristics, exhibited promising results in relatively less turbid lakes (R2 = 0.62 and 0.76, respectively). The results presented here highlight the complexity associated with remotely sensed lake water quality estimates and the high degree of uncertainty due to various limitations, including the lake water optical properties and the choice of methods

    The Possibilist Transactional Interpretation and Relativity

    Full text link
    A recent ontological variant of Cramer's Transactional Interpretation, called "Possibilist Transactional Interpretation" or PTI, is extended to the relativistic domain. The present interpretation clarifies the concept of 'absorption,' which plays a crucial role in TI (and in PTI). In particular, in the relativistic domain, coupling amplitudes between fields are interpreted as amplitudes for the generation of confirmation waves (CW) by a potential absorber in response to offer waves (OW), whereas in the nonrelativistic context CW are taken as generated with certainty. It is pointed out that solving the measurement problem requires venturing into the relativistic domain in which emissions and absorptions take place; nonrelativistic quantum mechanics only applies to quanta considered as 'already in existence' (i.e., 'free quanta'), and therefore cannot fully account for the phenomenon of measurement, in which quanta are tied to sources and sinks.Comment: Final version with some minor corrections as published in Foundations of Physics. This paper has significant overlap with Chapter 6 of my book on the Transactional Interpretation, forthcoming from Cambridge University Press: http://www.cambridge.org/us/knowledge/isbn/item6860644/?site_locale=en_US (Additional preview material is available at rekastner.wordpress.com) Comments welcom

    Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.

    Get PDF
    Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. IMPORTANCE: Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We show that these enzymes are required for normal growth and define the mechanism through which cellular enlargement is accomplished, i.e., by breaking bonds in the peptidoglycan, which reduces the stiffness of the cell wall, enabling it to stretch and expand, a process that is likely to be fundamental to many bacteria

    How much time does a measurement take?

    Full text link
    We consider the problem of measurement using the Lindblad equation, which allows the introduction of time in the interaction between the measured system and the measurement apparatus. We use analytic results, valid for weak system-environment coupling, obtained for a two-level system in contact with a measurer (Markovian interaction) and a thermal bath (non-Markovian interaction), where the measured observable may or may not commute with the system-environment interaction. Analysing the behavior of the coherence, which tends to a value asymptotically close to zero, we obtain an expression for the time of measurement which depends only on the system-measurer coupling, and which does not depend on whether the observable commutes with the system-bath interaction. The behavior of the coherences in the case of strong system-environment coupling, found numerically, indicates that an increase in this coupling decreases the measurement time, thus allowing our expression to be considered the upper limit for the duration of the process.Comment: REVISED VERSION: 17 pages, 2 figure

    Reconfigurable microfluidic circuits for isolating and retrieving cells of interest

    Get PDF
    Microfluidic devices are widely used in many fields of biology, but a key limitation is that cells are typically surrounded by solid walls, making it hard to access those that exhibit a specific phenotype for further study. Here, we provide a general and flexible solution to this problem that exploits the remarkable properties of microfluidic circuits with fluid walls─transparent interfaces between culture media and an immiscible fluorocarbon that are easily pierced with pipets. We provide two proofs of concept in which specific cell subpopulations are isolated and recovered: (i) murine macrophages chemotaxing toward complement component 5a and (ii) bacteria (Pseudomonas aeruginosa) in developing biofilms that migrate toward antibiotics. We build circuits in minutes on standard Petri dishes, add cells, pump in laminar streams so molecular diffusion creates attractant gradients, acquire time-lapse images, and isolate desired subpopulations in real time by building fluid walls around migrating cells with an accuracy of tens of micrometers using 3D printed adaptors that convert conventional microscopes into wall-building machines. Our method allows live cells of interest to be easily extracted from microfluidic devices for downstream analyses

    Generalised Israel Junction Conditions for a Gauss-Bonnet Brane World

    Get PDF
    In spacetimes of dimension greater than four it is natural to consider higher order (in R) corrections to the Einstein equations. In this letter generalized Israel junction conditions for a membrane in such a theory are derived. This is achieved by generalising the Gibbons-Hawking boundary term. The junction conditions are applied to simple brane world models, and are compared to the many contradictory results in the literature.Comment: 4 page

    Implications of structural inheritance in oblique rift zones for basin compartmentalization: Nkhata Basin, Malawi Rift (EARS)

    Get PDF
    The Cenozoic East African Rift System (EARS) is an exceptional example of active continental extension, providing opportunities for furthering our understanding of hydrocarbon plays within rifts. It is divided into structurally distinct western and eastern branches. The western branch comprises deep rift basins separated by transfer zones, commonly localised onto pre-existing structures, offering good regional scale hydrocarbon traps. At a basin-scale, local discrete inherited structures might also play an important role on fault localisation and hydrocarbon distribution. Here, we consider the evolution of the Central basin of the Malawi Rift, in particular the influence of pre-existing structural fabrics.Integrating basin-scale multichannel 2D, and high resolution seismic datasets we constrain the border, Mlowe-Nkhata, fault system (MNF) to the west of the basin and smaller Mbamba fault (MF) to the east and document their evolution. Intra basin structures define a series of horsts, which initiated as convergent transfers, along the basin axis. The horsts are offset along a NE-SW striking transfer fault parallel to and along strike of the onshore Karoo (Permo-Triassic) Ruhuhu graben. Discrete pre-existing structures probably determined its location and, oriented obliquely to the extension orientation it accommodated predominantly strike-slip deformation, with more slowly accrued dip-slip.To the north of this transfer fault, the overall basin architecture is asymmetric, thickening to the west throughout; while to the south, an initially symmetric graben architecture became increasingly asymmetric in sediment distribution as strain localised onto the western MNF. The presence of the axial horst increasingly focussed sediment supply to the west. As the transfer fault increased its displacement, so this axial supply was interrupted, effectively starving the south-east while ponding sediments between the western horst margin and the transfer fault. This asymmetric bathymetry and partitioned sedimentation continues to the present-day, overprinting the early basin symmetry and configuration. Sediments deposited earlier become increasingly dissected and fault juxtapositions changed at a small (10-100 m) scale. The observed influence of basin-scale transfer faults on sediment dispersal and fault compartmentalization due to pre-existing structures oblique to the extension orientation is relevant to analogous exploration settings
    • 

    corecore