1,145 research outputs found
Co-production of synfuels and electricity from coal + biomass with zero net carbon emissions: An Illinois case study
Abstract Energy, carbon, and economic performance are estimated for facilities co-producing Fischer–Tropsch Liquid (FTL) fuels and electricity from a co-feed of biomass and coal in Illinois, with capture and storage of by-product CO 2 . The estimates include detailed models of supply systems for corn stover or mixed prairie grasses and of feedstock conversion facilities. The Illinois results are extrapolated to estimate the potential FTL production in 23 states
Controlled Growth, Patterning and Placement of Carbon Nanotube Thin Films
Controlled growth, patterning and placement of carbon nanotube (CNT) thin
films for electronic applications are demonstrated. The density of CNT films is
controlled by optimizing the feed gas composition as well as the concentration
of growth catalyst in a chemical vapor deposition process. Densities of CNTs
ranging from 0.02 CNTs/{\mu}m^2 to 1.29 CNTs/{\mu}m^2 are obtained. The
resulting pristine CNT thin films are then successfully patterned using either
pre-growth or post-growth techniques. By developing a layered photoresist
process that is compatible with ferric nitrate catalyst, significant
improvements over popular pre-growth patterning methods are obtained.
Limitations of traditional post-growth patterning methods are circumvented by
selective transfer printing of CNTs with either thermoplastic or metallic
stamps. Resulting as-grown patterns of CNT thin films have edge roughness (< 1
{\mu}m) and resolution (< 5 {\mu}m) comparable to standard photolithography.
Bottom gate CNT thin film devices are fabricated with field-effect mobilities
up to 20 cm^2/Vs and on/off ratios of the order of 10^3. The patterning and
transfer printing methods discussed here have a potential to be generalized to
include other nanomaterials in new device configurations
Nanoscale Equilibrium Crystal Shapes
The finite size and interface effects on equilibrium crystal shape (ECS) have
been investigated for the case of a surface free energy density including step
stiffness and inverse-square step-step interactions. Explicitly including the
curvature of a crystallite leads to an extra boundary condition in the solution
of the crystal shape, yielding a family of crystal shapes, governed by a shape
parameter c. The total crystallite free energy, including interface energy, is
minimized for c=0, yielding in all cases the traditional PT shape (z x3/2).
Solutions of the crystal shape for c≠0 are presented and discussed in the
context of meta-stable states due to the energy barrier for nucleation.
Explicit scaled relationships for the ECS and meta-stable states in terms of
the measurable step parameters and the interfacial energy are presented.Comment: 35 page
Diffusive Charge Transport in Graphene on SiO2
We review our recent work on the physical mechanisms limiting the mobility of
graphene on SiO2. We have used intentional addition of charged scattering
impurities and systematic variation of the dielectric environment to
differentiate the effects of charged impurities and short-range scatterers. The
results show that charged impurities indeed lead to a conductivity linear in
density in graphene, with a scattering magnitude that agrees quantitatively
with theoretical estimates [1]; increased dielectric screening reduces
scattering from charged impurities, but increases scattering from short-range
scatterers [2]. We evaluate the effects of the corrugations (ripples) of
graphene on SiO2 on transport by measuring the height-height correlation
function. The results show that the corrugations cannot mimic long-range
(charged impurity) scattering effects, and have too small an
amplitude-to-wavelength ratio to significantly affect the observed mobility via
short-range scattering [3, 4]. Temperature-dependent measurements show that
longitudinal acoustic phonons in graphene produce a resistivity linear in
temperature and independent of carrier density [5]; at higher temperatures,
polar optical phonons of the SiO2 substrate give rise to an activated, carrier
density-dependent resistivity [5]. Together the results paint a complete
picture of charge carrier transport in graphene on SiO2 in the diffusive
regime.Comment: 28 pages, 7 figures, submitted to Graphene Week proceeding
Pentacene islands grown on ultra-thin SiO2
Ultra-thin oxide (UTO) films were grown on Si(111) in ultrahigh vacuum at
room temperature and characterized by scanning tunneling microscopy. The
ultra-thin oxide films were then used as substrates for room temperature growth
of pentacene. The apparent height of the first layer is 1.57 +/- 0.05 nm,
indicating standing up pentacene grains in the thin-film phase were formed.
Pentacene is molecularly resolved in the second and subsequent molecular
layers. The measured in-plane unit cell for the pentacene (001) plane (ab
plane) is a=0.76+/-0.01 nm, b=0.59+/-0.01 nm, and gamma=87.5+/-0.4 degrees. The
films are unperturbed by the UTO's short-range spatial variation in tunneling
probability, and reduce its corresponding effective roughness and correlation
exponent with increasing thickness. The pentacene surface morphology follows
that of the UTO substrate, preserving step structure, the long range surface
rms roughness of ~0.1 nm, and the structural correlation exponent of ~1.Comment: 15 pages, 4 figure
Electromigration-Induced Flow of Islands and Voids on the Cu(001) Surface
Electromigration-induced flow of islands and voids on the Cu(001) surface is
studied at the atomic scale. The basic drift mechanisms are identified using a
complete set of energy barriers for adatom hopping on the Cu(001) surface,
combined with kinetic Monte Carlo simulations. The energy barriers are
calculated by the embedded atom method, and parameterized using a simple model.
The dependence of the flow on the temperature, the size of the clusters, and
the strength of the applied field is obtained. For both islands and voids it is
found that edge diffusion is the dominant mass-transport mechanism. The rate
limiting steps are identified. For both islands and voids they involve
detachment of atoms from corners into the adjacent edge. The energy barriers
for these moves are found to be in good agreement with the activation energy
for island/void drift obtained from Arrhenius analysis of the simulation
results. The relevance of the results to other FCC(001) metal surfaces and
their experimental implications are discussed.Comment: 9 pages, 13 ps figure
A Review of the fossil record of turtles of the clade Baenidae
The fossil record of the turtle clade Baenidae ranges from the Early Cretaceous (Aptian—Albian) to the Eocene. The group is present throughout North America during the Early Cretaceous, but is restricted to the western portions of the continents in the Late Cretaceous and Paleogene. No credible remains of the clade have been reported outside of North America to date. Baenids were warmadapted freshwater aquatic turtles that supported high levels of diversity at times through niche partitioning, particularly by adapting to a broad range of dietary preferences ranging from omnivorous to molluscivorous. Current phylogenies place Baenidae near the split of crown-group Testudines. Within Baenidae three more inclusive, named clades are recognized: Baenodda, Palatobaeninae and Eubaeninae. A taxonomic review of the group concludes that of 49 named taxa, 30 are nomina valida, 12 are nomina invalida and 7 are nomina dubia
Propagation and Structure of Planar Streamer Fronts
Streamers often constitute the first stage of dielectric breakdown in strong
electric fields: a nonlinear ionization wave transforms a non-ionized medium
into a weakly ionized nonequilibrium plasma. New understanding of this old
phenomenon can be gained through modern concepts of (interfacial) pattern
formation. As a first step towards an effective interface description, we
determine the front width, solve the selection problem for planar fronts and
calculate their properties. Our results are in good agreement with many
features of recent three-dimensional numerical simulations.
In the present long paper, you find the physics of the model and the
interfacial approach further explained. As a first ingredient of this approach,
we here analyze planar fronts, their profile and velocity. We encounter a
selection problem, recall some knowledge about such problems and apply it to
planar streamer fronts. We make analytical predictions on the selected front
profile and velocity and confirm them numerically.
(abbreviated abstract)Comment: 23 pages, revtex, 14 ps file
Using the Wigner-Ibach Surmise to Analyze Terrace-Width Distributions: History, User's Guide, and Advances
A history is given of the applications of the simple expression generalized
from the surmise by Wigner and also by Ibach to extract the strength of the
interaction between steps on a vicinal surface, via the terrace width
distribution (TWD). A concise guide for use with experiments and a summary of
some recent extensions are provided.Comment: 11 pages, 4 figures, reformatted (with revtex) version of refereed
paper for special issue of Applied Physics A entitled "From Surface Science
to Device Physics", in honor of the retirements of Prof. H. Ibach and Prof.
H. L\"ut
- …