97 research outputs found

    Genesis and Propagation of Fractal Structures During Photoelectrochemical Etching of n-Silicon

    Get PDF
    The genesis, propagation, and dimensions of fractal-etch patterns that form anodically on front- or back-illuminated n-Si(100) photoelectrodes in contact with 11.9 M NH₄F(aq) has been investigated during either linear-sweep voltammetry or when the electrode was held at a constant potential (E = +6.0 V versus Ag/AgCl). Optical images collected in situ during electrochemical experiments revealed the location and underlying mechanism of initiation and propagation of the structures on the surface. X-ray photoelectron spectroscopic (XPS) data collected for samples emersed from the electrolyte at varied times provided detailed information about the chemistry of the surface during fractal etching. The fractal structure was strongly influenced by the orientation of the crystalline Si sample. The etch patterns were initially generated at points along the circumference of bubbles that formed upon immersion of n-Si(100) samples in the electrolyte, most likely due to the electrochemical and electronic isolation of areas beneath bubbles. XPS data showed the presence of a tensile-stressed silicon surface throughout the etching process as well as the presence of SiO_xF_y on the surface. The two-dimensional fractal dimension D_(f,2D) of the patterns increased with etching time to a maximum observed value of D_(f,2D)=1.82. Promotion of fractal etching near etch masks that electrochemically and electronically isolated areas of the photoelectrode surface enabled the selective placement of highly branched structures at desired locations on an electrode surface

    Pentacene islands grown on ultra-thin SiO2

    Full text link
    Ultra-thin oxide (UTO) films were grown on Si(111) in ultrahigh vacuum at room temperature and characterized by scanning tunneling microscopy. The ultra-thin oxide films were then used as substrates for room temperature growth of pentacene. The apparent height of the first layer is 1.57 +/- 0.05 nm, indicating standing up pentacene grains in the thin-film phase were formed. Pentacene is molecularly resolved in the second and subsequent molecular layers. The measured in-plane unit cell for the pentacene (001) plane (ab plane) is a=0.76+/-0.01 nm, b=0.59+/-0.01 nm, and gamma=87.5+/-0.4 degrees. The films are unperturbed by the UTO's short-range spatial variation in tunneling probability, and reduce its corresponding effective roughness and correlation exponent with increasing thickness. The pentacene surface morphology follows that of the UTO substrate, preserving step structure, the long range surface rms roughness of ~0.1 nm, and the structural correlation exponent of ~1.Comment: 15 pages, 4 figure

    Genesis and Propagation of Fractal Structures During Photoelectrochemical Etching of n-Silicon

    Get PDF
    The genesis, propagation, and dimensions of fractal-etch patterns that form anodically on front- or back-illuminated n-Si(100) photoelectrodes in contact with 11.9 M NH₄F(aq) has been investigated during either linear-sweep voltammetry or when the electrode was held at a constant potential (E = +6.0 V versus Ag/AgCl). Optical images collected in situ during electrochemical experiments revealed the location and underlying mechanism of initiation and propagation of the structures on the surface. X-ray photoelectron spectroscopic (XPS) data collected for samples emersed from the electrolyte at varied times provided detailed information about the chemistry of the surface during fractal etching. The fractal structure was strongly influenced by the orientation of the crystalline Si sample. The etch patterns were initially generated at points along the circumference of bubbles that formed upon immersion of n-Si(100) samples in the electrolyte, most likely due to the electrochemical and electronic isolation of areas beneath bubbles. XPS data showed the presence of a tensile-stressed silicon surface throughout the etching process as well as the presence of SiO_xF_y on the surface. The two-dimensional fractal dimension D_(f,2D) of the patterns increased with etching time to a maximum observed value of D_(f,2D)=1.82. Promotion of fractal etching near etch masks that electrochemically and electronically isolated areas of the photoelectrode surface enabled the selective placement of highly branched structures at desired locations on an electrode surface

    Photoelectrochemical Conditioning of MOVPE p-InP Films for Light-Induced Hydrogen Evolution: Chemical, Electronic and Optical Properties

    Get PDF
    Homoepitaxial p-InP(100) thin films prepared by MOVPE (metallorganic vapor phase epitaxy) were transformed into an InP/oxide-phosphate/Rh heterostructure by photoelectrochemical conditioning. Surface sensitive synchrotron radiation photoelectron spectroscopy indicates the formation of a mixed oxide constituted by In(PO_3)_3, InPO_4 and In_(2)O_3 as nominal components during photo-electrochemical activation. The operation of these films as hydrogen evolving photocathode proved a light-to-chemical energy conversion efficiency of 14.5%. Surface activation arises from a shift of the semiconductor electron affinity by 0.44 eV by formation of In-Cl interfacial dipoles with a density of about 10^(12) cm^(−2). Predominant local In2O3-like structures in the oxide introduce resonance states near the semiconductor conduction band edge imparting electron conductivity to the phosphate matrix. Surface reflectance investigations indicate an enhanced light-coupling in the layered architecture

    Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Polymeric carbon nitride (g-C3N4) films were synthesized on polycrystalline semiconductor CuInS2 chalcopyrite thin film electrodes by thermal polycondensation and were investigated as photocathodes for the hydrogen evolution reaction (HER) under photoelectrochemical conditions. The composite photocathode materials were compared to g-C3N4 powders and were characterized with grazing incidence X-ray diffraction and X-ray photoemission spectroscopy as well as Fourier transform infrared and Raman spectroscopies. Surface modification of polycrystalline CuInS2 semiconducting thin films with photocatalytically active g-C3N4 films revealed structural and chemical properties corresponding to the properties of g-C3N4 powders. The g-C3N4/CuInS2 composite photocathode material generates a cathodic photocurrent at potentials up to +0.36 V vs. RHE in 0.1 M H2SO4 aqueous solution (pH 1), which corresponds to a +0.15 V higher onset potential of cathodic photocurrent than the unmodified CuInS2 semiconducting thin film photocathodes. The cathodic photocurrent for the modified composite photocathode materials was reduced by almost 60% at the hydrogen redox potential. However, the photocurrent generated from the g-C3N4/CuInS2 composite electrode was stable for 22 h. Therefore, the presence of the polymeric g-C3N4 films composed of a network of nanoporous crystallites strongly protects the CuInS2 semiconducting substrate from degradation and photocorrosion under acidic conditions. Conversion of visible light to hydrogen by photoelectrochemical water splitting can thus be successfully achieved by g-C3N4 films synthesized on polycrystalline CuInS2 chalcopyrite electrodes.BMBF, 03IS2071D, Light2Hydroge

    Optimized immobilization of ZnO:Co electrocatalysts realizes 5% efficiency in photoassisted splitting of water

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Correction: There is an error in Fig. 8 of the manuscript. The correct Fig. 8 is shown in the additional file. To cite the Correction refer to DOI:10.1039/c6ta90030e.Organic solvents with varied electrophoretic mobility have been employed for deposition of nanocrystalline ZnO: Co particles onto fluorinated tin oxide supports. Evaluation of the electrochemical activity for the oxygen evolution reaction proves a clear solvent-dependence with highest activity upon deposition from acetonitrile and lowest activity upon deposition from ethanol. Analysis of the resulting layer thickness and density attributes the improved electrochemical activity of acetonitrile-prepared samples to larger film thicknesses with lower film densities, i.e. to films with higher porosity. The findings suggest that the ZnO: Co films represent an initially nanocrystalline system where the catalytic activity is predominantly confined to a thin surface region rather than to comprise the entire volume. Closer inspection of this surface region proves successive in operando transformation of the nanocrystalline to an amorphous phase during evolution of oxygen. Furthermore, less active but highly transparent ZnO: Co phases, prepared from ethanol-containing suspensions, can be successfully employed in a stacking configuration with a low-cost triple-junction solar cell. Thereby, a solar-to-hydrogen efficiency of 5.0% in splitting of water at pH 14 could be realized. In contrast, highly light-absorbing acetonitrile/acetone-prepared samples limit the efficiency to about 1%, demonstrating thus the decisive influence of the used organic solvent upon electrophoretic deposition. Stability investigations over several days finally prove that the modular architecture, applied here, represents an attractive approach for coupling of highly active electrocatalysts with efficient photovoltaic devices.BMBF, 03IS2071F, Light2Hydrogen - Energien fĂŒr die ZukunftDFG, SPP 1613, Regenerativ erzeugte Brennstoffe durch lichtgetriebene Wasserspaltung: AufklĂ€rung der Elementarprozesse und Umsetzungsperspektiven auf technologische Konzept

    XPS studies on dispersed and immobilised carbon nitrides used for dye degradation

    Get PDF
    Liquid phase adsorption is a common technique in waste water purification. However, this process has some downsides. The removal of environmentally harmful contaminants from organic liquids by adsorption produces secondary waste which has to be treated afterwards. The treatment can be e.g. high temperatures or a landfill. Photocatalysts such as CN6 can remove the dye under light irradiation but most times they have to be separated afterwards. Immobilisation of these photocatalysts can be one way to address this problem. The resulting photocatalyst layers were analysed in operando by near-ambient pressure XPS. This enabled us to detect the active species, i.e. oxygen radicals, at the surface, responsible for the dye degradation.TU Berlin, Open-Access-Mittel - 201

    An optical quasimonomer

    Get PDF
    A comprehensive investigation of the luminescent properties of carbon nitride polymers, based on tri-s-triazine units, has been conducted. Steady-state temperature- and excitation-power-dependent as well as time-resolved measurements with near-UV excitation (λ=325 nm and 405 nm) yield strong photoluminescence, covering the visible spectrum. The spectral, thermal, and temporal features of the photoluminescence can be satisfactorily described by the excitation and radiative recombination of molecular excitons, localized at single tri-s-triazine units. The discussed model is in accordance with the recently reported absorption features of carbon nitride polymers. Thus, from the point of view of optical spectroscopy, the material effectively behaves as a monomer

    Sustained Water Oxidation by Direct Electrosynthesis of Ultrathin Organic Protection Films on Silicon

    Get PDF
    Artificial photosynthesis allows exceeding the efficiency and stability limits of natural photosynthesis. Based on the use of semiconducting absorbers, high efficiency in water photolysis has been achieved in various photoelectrode configurations. However, integrated systems are limited in their stability, and more stable half-cell electrodes use protection films prepared by laborious methods. Herein, the facile low-temperature preparation of ultrathin organic protection coatings is demonstrated. The formation is based on the catalytic properties of water oxidation catalysts toward alcohol-polymerization reactions, which results in the formation of hitherto unknown protection layers on silicon. The interfacial layers are generated via iodine-mediated electro-reductive polymerization of ethanol, concomitantly forming during electrophoretic transport of RuO_2 onto silicon supports. Reaction chemistry analyses show that the RuO_2-induced catalysis introduces E2-elimination reactions which result in a carbon sp^3 –sp^2 transformation of the film. For the two modes of photoelectrochemical operation, the photovoltaic and the photoelectrocatalytic mode, 20 and 15 mA cm^(−2) photocurrent densities, respectively, are obtained with unaltered output for 8 and 24 h. The interfacial layer enables Si photovoltages of 500 mV, demonstrating extraordinary electronic interface quality. Since only hydrogen termination of the surface is a prerequisite for growth of the organic protection layer, the method is applicable to a wide range of semiconductors
    • 

    corecore