2,121 research outputs found

    Global existence results for complex hyperbolic models of bacterial chemotaxis

    Full text link
    Bacteria are able to respond to environmental signals by changing their rules of movement. When we take into account chemical signals in the environment, this behaviour is often called chemotaxis. At the individual-level, chemotaxis consists of several steps. First, the cell detects the extracellular signal using receptors on its membrane. Then, the cell processes the signal information through the intracellular signal transduction network, and finally it responds by altering its motile behaviour accordingly. At the population level, chemotaxis can lead to aggregation of bacteria, travelling waves or pattern formation, and the important task is to explain the population-level behaviour in terms of individual-based models. It has been previously shown that the transport equation framework is suitable for connecting different levels of modelling of bacterial chemotaxis. In this paper, we couple the transport equation for bacteria with the (parabolic/elliptic) equation for the extracellular signals. We prove global existence of solutions for the general hyperbolic chemotaxis models of cells which process the information about the extracellular signal through the intracellular biochemical network and interact by altering the extracellular signal as well. The conditions for global existence in terms of the properties of the signal transduction model are given.Comment: 22 pages, submitted to Discrete and Continuous Dynamical Systems Series

    Nonuniqueness for the kinetic Fokker-Planck equation with inelastic boundary conditions

    Full text link
    We describe the structure of solutions of the kinetic Fokker-Planck equations in domains with boundaries near the singular set in one-space dimension. We study in particular the behaviour of the solutions of this equation for inelastic boundary conditions which are characterized by means of a coefficient rr describing the amount of energy lost in the collisions of the particles with the boundaries of the domain. A peculiar feature of this problem is the onset of a critical exponent rc which follows from the analysis of McKean (cf. [26]) of the properties of the stochastic process associated to the Fokker-Planck equation under consideration. In this paper, we prove rigorously that the solutions of the considered problem are nonunique if r<rcr < r_c and unique if rc<r1r_{c}<r\leq 1. In particular, this nonuniqueness explains the different behaviours found in the physics literature for numerical simulations of the stochastic differential equation associated to the Fokker-Planck equation. In the proof of the results of this paper we use several asymptotic formulas and computations in the companion paper [16].Comment: 64 pages, 1 figure. Previous version has been split into tw
    corecore