1,320 research outputs found

    Distributed boundary tracking using alpha and Delaunay-Cech shapes

    Get PDF
    For a given point set SS in a plane, we develop a distributed algorithm to compute the α−\alpha-shape of SS. α−\alpha-shapes are well known geometric objects which generalize the idea of a convex hull, and provide a good definition for the shape of SS. We assume that the distances between pairs of points which are closer than a certain distance r>0r>0 are provided, and we show constructively that this information is sufficient to compute the alpha shapes for a range of parameters, where the range depends on rr. Such distributed algorithms are very useful in domains such as sensor networks, where each point represents a sensing node, the location of which is not necessarily known. We also introduce a new geometric object called the Delaunay-\v{C}ech shape, which is geometrically more appropriate than an α−\alpha-shape for some cases, and show that it is topologically equivalent to α−\alpha-shapes

    The Puzzling Collapse of Electronic Sliding Friction on a Superconductor Surface

    Full text link
    In a recent paper [Phys. Rev. Lett. 80 (1998) 1690], Krim and coworkers have observed that the friction force, acting on a thin physisorbed layer of N_2 sliding on a lead film, abruptly decreases by a factor of ~2 when the lead film is cooled below its superconductivity transition temperature. We discuss the possible mechanisms for the abruptness of the sliding friction drop, and also discuss the relevance of these results to the problem of electronic friction.Comment: 5 pages, no figure

    Persistent Homology of Delay Embeddings

    Full text link
    The objective of this study is to detect and quantify the periodic behavior of the signals using topological methods. We propose to use delay-coordinate embeddings as a tool to measure the periodicity of signals. Moreover, we use persistent homology for analyzing the structure of point clouds of delay-coordinate embeddings. A method for finding the appropriate value of delay is proposed based on the autocorrelation function of the signals. We apply this topological approach to wheeze signals by introducing a model based on their harmonic characteristics. Wheeze detection is performed using the first Betti numbers of a few number of landmarks chosen from embeddings of the signals.Comment: 16 pages, 8 figure

    Demystifying Deep Learning: A Geometric Approach to Iterative Projections

    Full text link
    Parametric approaches to Learning, such as deep learning (DL), are highly popular in nonlinear regression, in spite of their extremely difficult training with their increasing complexity (e.g. number of layers in DL). In this paper, we present an alternative semi-parametric framework which foregoes the ordinarily required feedback, by introducing the novel idea of geometric regularization. We show that certain deep learning techniques such as residual network (ResNet) architecture are closely related to our approach. Hence, our technique can be used to analyze these types of deep learning. Moreover, we present preliminary results which confirm that our approach can be easily trained to obtain complex structures.Comment: To be appeared in the ICASSP 2018 proceeding
    • …
    corecore