57 research outputs found

    New constraints on H_0 and Omega_M from SZE/X-RAY data and Baryon Acoustic Oscillations

    Full text link
    The Hubble constant, H0H_0, sets the scale of the size and age of the Universe and its determination from independent methods is still worthwhile to be investigated. In this article, by using the Sunyaev-Zel`dovich effect and X-ray surface brightness data from 38 galaxy clusters observed by Bonamente {\it{et al.}} (2006), we obtain a new estimate of H0H_0 in the context of a flat Λ\LambdaCDM model. There is a degeneracy on the mass density parameter (Ωm\Omega_{m}) which is broken by applying a joint analysis involving the baryon acoustic oscillations (BAO) as given by Sloan Digital Sky Survey (SDSS). This happens because the BAO signature does not depend on H0H_0. Our basic finding is that a joint analysis involving these tests yield H0=0.765−0.033+0.035H_0= 0.765^{+0.035}_{-0.033} km s−1^{-1} Mpc−1^{-1} and Ωm=0.27−0.02+0.03\Omega_{m}=0.27^{+0.03}_{-0.02}. Since the hypothesis of spherical geometry assumed by Bonamente {\it {et al.}} is questionable, we have also compared the above results to a recent work where a sample of triaxial galaxy clusters has been considered.Comment: 8 pages, 4 figures, 1 table, accepted version in the general relativity and gravitatio

    Efficacy and safety of cumaru syrup as complementary therapy in mild persistent asthma: a double-blind, randomized, placebo-controlled study

    Get PDF
    Amburana cearensis is a medicinal plant known as "cumaru". It is used in Northeast Brazil in the treatment of respiratory diseases. This was a randomized, double-blind, placebo-controlled study, with the aim of evaluating the efficacy and safety of cumaru syrup as complementary therapy in mild persistent asthma. The study consisted of 3 phases, pre-treatment, treatment and post-treatment. The primary efficacy outcome was comparison of the changes reported by patients of the cumaru and placebo groups after treatment, using the "Asthma Quality of Life Questionnaire" (AQLQ). The secondary outcome was the effect of cumaru syrup on lung function based on spirometry. The results showed that in the cumaru group, the proportion of patients who had global improvement in asthma symptoms was significantly greater (61.90%, P=0.0009) than in the placebo group (9.52%). Only the spirometric parameters Forced Vital Capacity (FVC) and Forced Expiratory Volume in 1 second (FEV1) showed significant intergroup differences in post-treatment (P0.05). Adverse events were reported by 3 patients (14.29%) in the cumaru group and 3 patients (14.29%) in the placebo group. All adverse events were considered non-serious and mild.Amburana cearensis Ă© uma planta medicinal conhecida como "cumaru". No Nordeste do Brasil Ă© usada no tratamento de doenças respiratĂłrias. Este Ă© um estudo randomizado, duplo-cego e controlado por placebo, com o objetivo de avaliar a eficĂĄcia e segurança do xarope de cumaru como terapia complementar da asma persistente leve. O estudo consistiu de trĂȘs fases, prĂ©-tratamento, tratamento e pĂłs-tratamento. A variĂĄvel primĂĄria para determinação da eficĂĄcia foi a comparação das mudanças referidas pelos pacientes dos grupos cumaru e placebo apĂłs o tratamento, usando o "QuestionĂĄrio sobre Qualidade de Vida na Asma" (QQVA). A variĂĄvel secundĂĄria foi o efeito do xarope de cumaru na função pulmonar baseado na espirometria. Os resultados mostraram que no grupo cumaru, a proporção de pacientes com melhora global dos sintomas da asma foi significativamente maior (61,90%, P=0.0009) que no grupo placebo (9,52%). Somente os parĂąmetros espiromĂ©tricos, capacidade vital forçada (CVF) e volume expiratĂłrio forçado no primeiro segundo (VEF1), mostraram diferença intergrupo significtivas no pĂłs-tratamento (P0.05). Eventos adversos foram reportados por 3 pacientes (14,29%) no grupo cumaru e 3 (14,29%) no grupo placebo. Todos os eventos adversos foram nĂŁo sĂ©rios e leves

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    The Psychological Science Accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    The Psychological Science Accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
    • 

    corecore