1,278 research outputs found

    K dwarfs and the chemical evolution of the Solar cylinder

    Get PDF
    K-dwarfs have life-times older than the present age of the Galactic disc, and are thus ideal stars to investigate the disc's chemical evolution. We have developed several photometric metallicity indicators for K dwarfs, based an a sample of accurate spectroscopic metallicities for 34 disc and halo G and K dwarfs. The photometric metallicities lead us to develop a metallicity index for K dwarfs based only on their position in the colour absolute-magnitude diagram. Metallicities have been determined for 431 single K dwarfs drawn from the Hipparcos catalog, selecting the stars by absolute magnitude and removing multiple systems. The sample is essentially a complete reckoning of the metal content in nearby K dwarfs. We use stellar isochrones to mark the stars by mass, and select a subset of 220 of the stars which is complete in a narrow mass interval. We fit the data with a model of the chemical evolution of the Solar cylinder. We find that only a modest cosmic scatter is required to fit our age metallicity relation. The model assumes two main infall episodes for the formation of the halo-thick disc and thin disc respectively. The new data confirms that the solar neighbourhood formed on a long timescale of order 7 Gyr.Comment: 14 pages, 15 figures, accepted by MNRA

    Guideline on management of the acute asthma attack in children by Italian Society of Pediatrics.

    Get PDF
    BACKGROUND: Acute asthma attack is a frequent condition in children. It is one of the most common reasons for emergency department (ED) visit and hospitalization. Appropriate care is fundamental, considering both the high prevalence of asthma in children, and its life-threatening risks. Italian Society of Pediatrics recently issued a guideline on the management of acute asthma attack in children over age 2, in ambulatory and emergency department settings. METHODS: The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was adopted. A literature search was performed using the Cochrane Library and Medline/PubMed databases, retrieving studies in English or Italian and including children over age 2 year. RESULTS: Inhaled ß2 agonists are the first line drugs for acute asthma attack in children. Ipratropium bromide should be added in moderate/severe attacks. Early use of systemic steroids is associated with reduced risk of ED visits and hospitalization. High doses of inhaled steroids should not replace systemic steroids. Aminophylline use should be avoided in mild/moderate attacks. Weak evidence supports its use in life-threatening attacks. Epinephrine should not be used in the treatment of acute asthma for its lower cost / benefit ratio, compared to ÎČ2 agonists. Intravenous magnesium solphate could be used in children with severe attacks and/or forced expiratory volume1 (FEV1) lower than 60% predicted, unresponsive to initial inhaled therapy. Heliox could be administered in life-threatening attacks. Leukotriene receptor antagonists are not recommended. CONCLUSIONS: This Guideline is expected to be a useful resource in managing acute asthma attacks in children over age 2

    Chemical evolution of the Milky Way: the origin of phosphorus

    Full text link
    Context. Recently, for the first time the abundance of P has been measured in disk stars. This provides the opportunity of comparing the observed abundances with predictions from theoretical models. Aims. We aim at predicting the chemical evolution of P in the Milky Way and compare our results with the observed P abundances in disk stars in order to put constraints on the P nucleosynthesis. Methods. To do that we adopt the two-infall model of galactic chemical evolution, which is a good model for the Milky Way, and compute the evolution of the abundances of P and Fe. We adopt stellar yields for these elements from different sources. The element P should have been formed mainly in Type II supernovae. Finally, Fe is mainly produced by Type Ia supernovae. Results. Our results confirm that to reproduce the observed trend of [P/Fe] vs. [Fe/H] in disk stars, P is formed mainly in massive stars. However, none of the available yields for P can reproduce the solar abundance of this element. In other words, to reproduce the data one should assume that massive stars produce more P than predicted by a factor of ~ 3. Conclusions. We conclude that all the available yields of P from massive stars are largely underestimated and that nucleosynthesis calculations should be revised. We also predict the [P/Fe] expected in halo stars.Comment: Accepted for publication in A&A (minor changes with respect to the submitted version

    A GEODATABASE FOR MULTISOURCE DATA MANAGEMENT APPLIED TO CULTURAL HERITAGE: THE CASE STUDY OF VILLA BUONACCORSI'S HISTORICAL GARDEN

    Get PDF
    Abstract. In recent years, the digitization of historical data related to the architectural heritage and the development of ICT-based methodologies applied to cultural goods have become increasingly relevant. In this context, the use of GIS (Geographical Information System) is growing significantly, with the aim of collecting, analysing and managing heterogeneous data in a spatial context. Given such premise, the site identified for this case-study is a historical Italian Garden into the Villa Buonaccorsi in Potenza Picena (MC, Italy). The project aims at creating a methodology, that organizing natural and artificial elements in the GIS, to support management and planning of this landscape architecture, considering also the changes during the time. A suitable GIS can promote and ensure a correct use of the heritage knowledge, preserving the historical identity, overlaying the data. The data management system, specifically developed for this case, is based on an open source GIS, where surveyed data coming from different sources and the relation to the attributes have been descripted in a conceptual model. The inventory of this geodatabase, in a dedicated GIS, has allowed to perform some queries, making in output a dialogue box with all the information, in form of report, useful to the manager of a historical garden. The structure of the GIS can significantly to help who works with similar cases and it can be useful for analysis, management, storage and integration of information related to Italian gardens.</p

    Strengthening functionally specific neural pathways with transcranial brain stimulation

    Get PDF
    Cortico-cortical paired associative stimulation (ccPAS) is a recently established offline dual-coil transcranial magnetic stimulation (TMS) protocol 1, 2, 3 based on the Hebbian principle of associative plasticity and designed to transiently enhance synaptic efficiency in neural pathways linking two interconnected (targeted) brain regions 4, 5. Here, we present a new ‘function-tuning ccPAS’ paradigm in which, by pairing ccPAS with the presentation of a specific visual feature, for example a specific motion direction, we can selectively target and enhance the synaptic efficiency of functionally specific, but spatially overlapping, pathways. We report that ccPAS applied in a state-dependent manner and at a low intensity selectively enhanced detection of the specific motion direction primed during the combined visual-TMS manipulations. This paradigm significantly enhances the specificity of TMS-induced plasticity, by allowing the targeting of cortico-cortical pathways associated with specific functions

    Effects of radial flows on the chemical evolution of the Milky Way disk

    Full text link
    The majority of chemical evolution models assume that the Galactic disk forms by means of infall of gas and divide the disk into several independent rings without exchange of matter between them. However, if gas infall is important, radial gas flows should be taken into account as a dynamical consequence of infall. The aim of this paper is to test the effect of radial gas flows on detailed chemical evolution models (one-infall and two-infall) for the Milky Way disk with different prescriptions for the infall law and star formation rate. We found, that with a gas radial inflow of constant speed the metallicity gradient tends to steepen. Taking into account a constant time scale for the infall rate along the Galaxy disk and radial flows with a constant speed, we obtained a too flat gradient, at variance with data, implying that an inside-out formation and/or a variable gas flow speed are required. To reproduce the observed gradients the gas flow should increase in modulus with the galactocentric distance, both in the one-infall and two-infall models. However, the inside-out disk formation coupled with a threshold in the gas density (only in the two-infall model) for star formation and/or a variable efficiency of star formation with galactocentric distance can also reproduce the observed gradients without radial flows. We showed that the radial flows can be the most important process in reproducing abundance gradients but only with a variable gas speed. Finally, one should consider that uncertainties in the data concerning gradients prevent us to draw firm conclusions. Future more detailed data will help to ascertain whether the radial flows are a necessary ingredient in the formation and evolution of the Galactic disk and disks in general.Comment: Accepted by A&A; 11 pages, 16 figure

    Looking for imprints of the first stellar generations in metal-poor bulge field stars

    Get PDF
    © 2016 ESO. Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] 1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims. The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ∌ 45 000) and high-signal-tonoise (S=N > 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods. High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe i and Fe ii. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results.We confirm that the analysed stars are moderately metal-poor (-1:04≀[Fe/H]≀-0:43), non-carbon-enhanced (non-CEMP) with [C/Fe] ≀+0:2, and α-enhanced.We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na-O, Al-O, Al-Mg anti-correlations) were detected in our sample. The heavy elements Y, Zr, Ba, La, and Eu also exhibit oversolar abundances. Three out of the five stars analysed here show slightly enhanced [Y/Ba] ratios similar to those found in other metal-poor bulge globular clusters (NGC 6522 and M 62). Conclusions. This sample shows enhancement in the first-to-second peak abundance ratios of heavy elements, as well as dominantly s-process element excesses. This can be explained by different nucleosynthesis scenarios: (a) the main r-process plus extra mechanisms, such as the weak r-process; (b) mass transfer from asymptotic giant branch stars in binary systems; (c) an early generation of fast-rotating massive stars. Larger samples of moderately metal-poor bulge stars, with detailed chemical abundances, are needed to better constrain the source of dominantly s-process elements in the early Universe

    The origin of abundance gradients in the Milky Way: the predictions of different models

    Full text link
    We aim at studying the abundance gradients along the Galactic disk and their dependence upon several parameters: a threshold in the surface gas density regulating star formation, the star formation efficiency, the timescale for the formation of the thin disk and the total surface mass density of the stellar halo. We test a model which considers a cosmological infall law. This law does not predict an inside-out disk formation, but it allows to well fit the properties of the solar vicinity. We study several cases. We find that to reproduce at the same time the abundance, star formation rate and surface gas density gradients along the Galactic disk it is necessary to assume an inside-out formation for the disk. The threshold in the gas density is not necessary and the same effect could be reached by assuming a variable star formation efficiency. A cosmologically derived infall law with an inside-out process for the disk formation and a variable star formation efficiency can indeed well reproduce all the properties of the disk. However, the cosmological model presented here does not have sufficient resolution to capture the requested inside-out formation for the disk.Comment: 13 pages, 17 figures and 2 tables. Accepted for publication in Astronomy & Astrophysic

    High-resolution abundance analysis of red giants in the globular cluster NGC 6522

    Get PDF
    The [Sr/Ba] and [Y/Ba] scatter observed in some galactic halo stars that are very metal-poor stars and in a few individual stars of the oldest known Milky Way globular cluster NGC 6522,have been interpreted as evidence of early enrichment by massive fast-rotating stars (spinstars). Because NGC 6522 is a bulge globular cluster, the suggestion was that not only the very-metal poor halo stars, but also bulge stars at [Fe/H]~-1 could be used as probes of the stellar nucleosynthesis signatures from the earlier generations of massive stars, but at much higher metallicity. For the bulge the suggestions were based on early spectra available for stars in NGC 6522, with a medium resolution of R~22,000 and a moderate signal-to-noise ratio. The main purpose of this study is to re-analyse the NGC 6522 stars previously reported using new high-resolution (R~45,000) and high signal-to-noise spectra (S/N>100). We aim at re-deriving their stellar parameters and elemental ratios, in particular the abundances of the neutron-capture s-process-dominated elements such as Sr, Y, Zr, La, and Ba, and of the r-element Eu. High-resolution spectra of four giants belonging to the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVESconfiguration. The spectroscopic parameters were derived based on the excitation and ionization equilibrium of \ion{Fe}{I} and \ion{Fe}{II}. Our analysis confirms a metallicity [Fe/H] = -0.95+-0.15 for NGC 6522, and the overabundance of the studied stars in Eu (with +~0.2 < [Eu/Fe] < +~0.4) and alpha-elements O and Mg. The neutron-capture s-element-dominated Sr, Y, Zr, Ba, La now show less pronounced variations from star to star. Enhancements are in the range 0.0 < [Sr/Fe] < +0.4, +0.23 < [Y/Fe] < +0.43, 0.0 < [Zr/Fe] < +0.4, 0.0 < [La/Fe] < +0.35,and 0.05 < [Ba/Fe] < +0.55.Comment: date of acceptation: 31/07/2014, in press, 24 pages, 19 figures,Astronomy & Astrophysics, 201
    • 

    corecore