342 research outputs found
The ALICE experiment at LHC: physics prospects and detector design
ALICE (A Large Ion Collider Experiment)is a dedicated detector designed to exploit the unique physics opportunities which will be offered by nucleus-nucleus collisions at the LHC. At the LHC,it will be possible to explore a radically new regime of matter, stepping up by a large factor in both volume and energy density from the nuclear interactions studied at the SpS and at RHIC. Thanks to the huge number of secondaries produced, it will be possible to measure most of the relevant variables on an event-by-event basis. The LHC energy and luminosity will allow the full spectroscopy of the Y family and of D and B mesons. ALICE is conceived as a genera -purpose detector, in which most of the hadrons, leptons and photons produced in the interaction can be measured and identified. The baseline design consists of a central ( |n| < 0 .9) detector covering the full azimuth and a forward (2 .4 < n < 4) muon arm, complemented by a forward magnetic spectrometer to study vector meson production, a multiplicity detector covering the forward rapidity region (up to |n| = 4.5) and a zero degree calorimeter. The central detector will be embedded in large magnet with a weak field of 0.2T, and will consist of a high-resolution inner tracking system, a cylindrical time projection chamber, particle identification arrays (time of flight and ring imaging cerenkov detectors), a transition radiation detector for electron identification and a single-arm electromagnetic calorimeter
Beam test results of the irradiated Silicon Drift Detector for ALICE
The Silicon Drift Detectors will equip two of the six cylindrical layers of
high precision position sensitive detectors in the ITS of the ALICE experiment
at LHC. In this paper we report the beam test results of a SDD irradiated with
1 GeV electrons. The aim of this test was to verify the radiation tolerance of
the device under an electron fluence equivalent to twice particle fluence
expected during 10 years of ALICE operation.Comment: 6 pages,6 figures, to appear in the proceedings of International
  Workshop In high Multiplicity Environments (TIME'05), 3-7 October 2005,
  Zurich,Switzerlan
Strongly Enhanced Current Densities in Superconducting Coated Conductors of YBa2Cu3O7-x + BaZrO3
There are numerous potential applications for superconducting tapes, based on
YBa2Cu3O7-x (YBCO) films coated onto metallic substrates. A long established
goal of more than 15 years has been to understand the magnetic flux pinning
mechanisms which allow films to maintain high current densities out to high
magnetic fields. In fact, films carry 1-2 orders of magnitude higher current
densities than any other form of the material. For this reason, the idea of
further improving pinning has received little attention. Now that
commercialisation of conductors is much closer, for both better performance and
lower fabrication costs, an important goal is to achieve enhanced pinning in a
practical way. In this work, we demonstrate a simple and industrially scaleable
route which yields a 1.5 to 5-fold improvement in the in-field current
densities of already-high-quality conductors
Characteristics of the ALICE Silicon Drift Detector
A Silicon Drift Detector (SDD) with an active area of 7.0 x 7.5 cm2 has been designed, produced and tested for the ALICE Inner Tracking System. The development of the SDD has been focussed on the capability of the detector to work without an external support to the integrated high voltage divider. Severalfeatures have been implemented in the design in order to increase the robustness and the long-term electrical stability of the detector. One of the prototypes has been tested in a pion beam at the CERN SPS. Preliminary results on the position resolution are given
Correction of Dopant Concentration Fluctuation Effects in Silicon Drift Detectors
Dopant fluctuations in silicon wafers are responsible for systematic errors in the determination of the particle crossing point in silicon drift detectors. In this paper, we report on the first large scale measurement of this effect by means of a particle beam. A significant improvement of the anodic resolution has been obtained by correcting for these systematic deviations
Recent results from beam tests of large area silicon drift detectors
Silicon drift detectors with an active area of 7.0 × 7.5 cm2 will equip the two middle layers of the Inner Tracking System of the ALICE experiment. The performance of several prototypes was studied during beam tests carried out at the CERN SPS facility. The results of the beam test data analysis are discussed in this paper
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
The ALICE Silicon Drift Detector System
The project of the two Silicon Drift Detector layers of the ALICE Inner Tracking System is reviewed. Recent results obtained from beam tests are presented
Operation and calibration of the Silicon Drift Detectors of the ALICE experiment during the 2008 cosmic ray data taking period
The calibration and performance of the Silicon Drift Detector of the ALICE experiment during the 2008 cosmic ray run will be presented. In particular the procedures to monitor the running parameters (baselines, noise, drift speed) are detailed. Other relevant parameters (SOP delay, time-zero, charge calibration) were also determined
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at  TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range  are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
  version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
- …
