203 research outputs found

    Les espaces de l'halieutique

    Get PDF

    Modelled subglacial floods and tunnel valleys control the life cycle of transitory ice streams

    Get PDF
    Ice streams are corridors of fast-flowing ice that control mass transfers from continental ice sheets to oceans. Their flow speeds are known to accelerate and decelerate, their activity can switch on and off, and even their locations can shift entirely. Our analogue physical experiments reveal that a life cycle incorporating evolving subglacial meltwater routing and bed erosion can govern this complex transitory behaviour. The modelled ice streams switch on and accelerate when subglacial water pockets drain as marginal outburst floods (basal decoupling). Then they decelerate when the lubricating water drainage system spontaneously organizes itself into channels that create tunnel valleys (partial basal recoupling). The ice streams surge or jump in location when these water drainage systems maintain low discharge but they ultimately switch off when tunnel valleys have expanded to develop efficient drainage systems. Beyond reconciling previously disconnected observations of modern and ancient ice streams into a single life cycle, the modelling suggests that tunnel valley development may be crucial in stabilizing portions of ice sheets during periods of climate change

    Photoswitchable diacylglycerols enable optical control of protein kinase C.

    Get PDF
    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling

    Inhibitory Effects of Leptin on Pancreatic α-Cell Function

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)OBJECTIVE-Leptin released from adipocytes plays a key role in the control of food intake, energy balance, and glucose homeostasis. In addition to its central action, leptin directly affects pancreatic beta-cells, inhibiting insulin secretion, and, thus, modulating glucose homeostasis. However, despite the importance of glucagon secretion in glucose homeostasis, the role of leptin in a-cell function has not been studied in detail. In the present study, we have investigated this functional interaction. RESEARCH DESIGN AND METHODS-The presence of leptin receptors (ObR) was demonstrated by RT-PCR analysis, Western blot, and immunocytochemistry. Electrical activity was analyzed by patch-clamp and Ca(2+) signals by confocal microscopy. Exocytosis and glucagon secretion were assessed using fluorescence methods and radioimmunoassay, respectively. RESULTS-The expression of several ObR isoforms (a-e) was detected in glucagon-secreting alpha TC1-9 cells. ObRb, the main isoform involved in leptin signaling, was identified at the protein level in alpha TC1-9 cells as well as in mouse and human alpha-cells. The application of leptin (6.25 nmol/l) hyperpolarized the alpha-cell membrane potential, suppressing the electrical activity induced by 0.5 mmol/l glucose. Additionally, leptin inhibited Ca(2+) signaling in alpha TC1-9 cells and in mouse and human alpha-cells within intact islets. A similar result occurred with 0.625 nmol/l leptin. These effects were accompanied by a decrease in glucagon secretion from mouse islets and were counteracted by the phosphatidylinositol 3-kinase inhibitor, wortmannin, suggesting the involvement of this pathway in leptin action. CONCLUSIONS-These results demonstrate that leptin inhibits alpha-cell function, and, thus, these cells are involved in the adipo-insular communication. Diabetes 58:1616-1624, 200958716161624Ministerio de Educacion y Ciencia [BFU2007-67607, PCI2005-A7-0131, BFU2008-01492, SAF2006-07382]Ministerio de Ciencia a InnovacionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Ministerio de Educacion y Ciencia [BFU2007-67607, PCI2005-A7-0131, BFU2008-01492, SAF2006-07382]FAPESP [2008/53811-8

    Control of the Intracellular Redox State by Glucose Participates in the Insulin Secretion Mechanism

    Get PDF
    Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)(CAPES) Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazi

    A KATP Channel-Dependent Pathway within α Cells Regulates Glucagon Release from Both Rodent and Human Islets of Langerhans

    Get PDF
    Glucagon, secreted from pancreatic islet α cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring β cells, or to an intrinsic glucose sensing by the α cells themselves. We examined hormone secretion and Ca2+ responses of α and β cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn2+ signalling was blocked, but was reversed by low concentrations (1–20 μM) of the ATP-sensitive K+ (KATP) channel opener diazoxide, which had no effect on insulin release or β cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 μM). Higher diazoxide concentrations (≥30 μM) decreased glucagon and insulin secretion, and α- and β-cell Ca2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 μM) stimulated glucagon secretion, whereas high concentrations (>10 μM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na+ (TTX) and N-type Ca2+ channels (ω-conotoxin), but not L-type Ca2+ channels (nifedipine), prevented glucagon secretion. Both the N-type Ca2+ channels and α-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an α-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion
    corecore